This lab was developed with our partner, Datadog. Your personal information may be shared with Datadog, the lab sponsor, if you have opted-in to receive product updates, announcements, and offers in your Account Profile.
GSP1167
Overview
Datadog is an observability service for cloud-scale applications, providing monitoring of servers, databases, tools, and services, through a SaaS-based data analytics platform. Google Kubernetes Engine (GKE), a service on the Google Cloud Platform (GCP), is a hosted platform for running and orchestrating containerized applications. Due to Kubernetes’s compartmentalized nature and dynamic scheduling, it can be difficult to diagnose points of failure or track down other issues in your infrastructure. Datadog Agent helps to collect metrics from Docker, Kubernetes, and your containerized applicationss. In this lab you will run the Datadog Agent in a Kubernetes cluster as a DaemonSet in order to start collecting your cluster and applications metrics, traces, and logs. You can deploy a Datadog Agent with a Helm chart or directly with a DaemonSet object YAML definition.
In this lab, you will be explaining and using those options in a real cluster, checking in real time the features they enable.
Objectives
In this lab, you will learn about using the Helm chart used to install the Datadog Agent. You will learn how to:
Deploy a GKE Standard Cluster.
Deploy the Datadog Operator and the Datadog Agent.
Deploy a application.
Check the default dashboard.
Check the Logs.
Create a custom dashboard.
Setup and Requirements
Before you click the Start Lab button
Read these instructions. Labs are timed and you cannot pause them. The timer, which starts when you click Start Lab, shows how long Google Cloud resources will be made available to you.
This Qwiklabs hands-on lab lets you do the lab activities yourself in a real cloud environment, not in a simulation or demo environment. It does so by giving you new, temporary credentials that you use to sign in and access Google Cloud for the duration of the lab.
What you need
To complete this lab, you need:
Access to a standard internet browser (Chrome browser recommended).
Time to complete the lab.
Note: If you already have your own personal Google Cloud account or project, do not use it for this lab.
Note: If you are using a Pixelbook, open an Incognito window to run this lab.
How to start your lab and sign in to the Google Cloud Console
Click the Start Lab button. If you need to pay for the lab, a pop-up opens for you to select your payment method.
On the left is a panel populated with the temporary credentials that you must use for this lab.
Copy the username, and then click Open Google Console.
The lab spins up resources, and then opens another tab that shows the Sign in page.
Tip: Open the tabs in separate windows, side-by-side.
In the Sign in page, paste the username that you copied from the Connection Details panel. Then copy and paste the password.
Important: You must use the credentials from the Connection Details panel. Do not use your Qwiklabs credentials. If you have your own Google Cloud account, do not use it for this lab (avoids incurring charges).
Click through the subsequent pages:
Accept the terms and conditions.
Do not add recovery options or two-factor authentication (because this is a temporary account).
Do not sign up for free trials.
After a few moments, the Cloud Console opens in this tab.
Activate Cloud Shell
Cloud Shell is a virtual machine that is loaded with development tools. It offers a persistent 5GB home directory and runs on the Google Cloud. Cloud Shell provides command-line access to your Google Cloud resources.
In the Cloud Console, in the top right toolbar, click the Activate Cloud Shell button.
Click Continue.
It takes a few moments to provision and connect to the environment. When you are connected, you are already authenticated, and the project is set to your PROJECT_ID. For example:
gcloud is the command-line tool for Google Cloud. It comes pre-installed on Cloud Shell and supports tab-completion.
You can list the active account name with this command:
In Cloud Shell, run the following commands to create a GKE Standard Kubernetes cluster
gcloud container clusters create "datadog" \
--machine-type="e2-medium" \
--num-nodes="2" \
--zone={{{project_0.default_zone|ZONE}}}
Note: you may get a deprecation warning, you can ignore that.
Click Check my progress to verify the objective.
Deploy a GKE Standard Cluster.
After a few minutes this will spin up a new Kubernetes cluster with the name datadog. In the meantime you can move on with the Datadog account creation step.
Task 2. Set up a Datadog trial account and get your Datadog API key
If you already have a trial account set up, you can use that. It is recommended that you do not use your production Datadog account to avoid cluttering the environment with test and training assets.
On the next page, you will see a list of available Agent installations. Click Kubernetes.
Click Select API Key, then Create New.
Enter a name and click Save.
Select the row with the new key, and click Use API Key.
Copy the Datadog API key.
In the Cloud Console, navigate to your Cloud Shell window. Type in the following command, replace <YOUR_DATADOG_API_KEY> with the Datadog API key you copied, and then run the command:
export DD_API_KEY=<YOUR_DATADOG_API_KEY>
Note! If you close the Cloud Shell, you'll lose the environment variable you just added. Keep it somewhere safe temporarily, or just leave the page open with the API key as mentioned above in case you need to add it again.
In Datadog's console, enable logging by going to Logs and clicking on Getting Started.
Task 3. Deploy the Datadog Operator and Agent
In this section, you will deploy the Datadog Operator.
Install the Datadog Operator by running the following command:
kubectl apply -f datadog-agent.yaml
Note: you may get a deprecation warning, you can ignore that.
Click Check my progress to verify the objective.
Deploy Datadog Operator.
Run the following to check the secrets that were created:
kubectl get secrets
You should get an output similar to this:
NAME TYPE DATA AGE
datadog-secret Opaque 1 11m
datadog-token Opaque 1 11m
sh.helm.release.v1.datadog-operator.v1 helm.sh/release.v1 1 11m
webhook-certificate Opaque 2 11m
The most important one is the one called datadog-secret. This is a secret that was automatically created that contains your API key.
Check that the secret actually contains your API key getting the value and base64 decoding it:
kubectl get secret datadog-secret --template='{{index .data "api-key"}}' | base64 -d
The other two token secrets are the ones used by the service accounts to communicate with the API server. Check the workloads that have been deployed:
kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
datadog-cluster-agent 1/1 1 1 10m
datadog-operator 1/1 1 1 12m
Run the following command to verify the Datadog Agent is running in your environment as a DaemonSet:
kubectl get daemonset
(Output)
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
datadog-agent 2 2 2 2 2 <NONE> 33m
Check the status of the Datadog agent:
kubectl exec -ti $(kubectl get pod -l app.kubernetes.io/component=agent -o name) -- agent status
Check the output and look at the different checks that are running by default.
Task 4. Deploy an Application
Download the application manifest. This application code lives here
After a few minutes you will see this command succeed. And a few minutes later you will see one or two new nodes show up. You can watch the pods using to check that the pods are now all in running state.
kubectl get po -w
After checking the pod status you can exit the command by using CTRL + C.
Because all your pods had not started before, the application could not run properly. But now that all your pods are running, you can access the application via the public IP address of the LoadBalancer.
kubectl get svc frontend-external -o json | jq '.status.loadBalancer.ingress[].ip'
In your browser, you can visit the ip to see the online boutique website.
Click Check my progress to verify the objective.
Scale the size of default node pool.
...helps you make the most of Google Cloud technologies. Our classes include technical skills and best practices to help you get up to speed quickly and continue your learning journey. We offer fundamental to advanced level training, with on-demand, live, and virtual options to suit your busy schedule. Certifications help you validate and prove your skill and expertise in Google Cloud technologies.
Manual Last Updated May 8, 2024
Lab Last Tested May 8, 2024
Copyright 2024 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
Les ateliers créent un projet Google Cloud et des ressources pour une durée déterminée.
Les ateliers doivent être effectués dans le délai imparti et ne peuvent pas être mis en pause. Si vous quittez l'atelier, vous devrez le recommencer depuis le début.
En haut à gauche de l'écran, cliquez sur Démarrer l'atelier pour commencer.
Utilisez la navigation privée
Copiez le nom d'utilisateur et le mot de passe fournis pour l'atelier
Cliquez sur Ouvrir la console en navigation privée
Connectez-vous à la console
Connectez-vous à l'aide des identifiants qui vous ont été attribués pour l'atelier. L'utilisation d'autres identifiants peut entraîner des erreurs ou des frais.
Acceptez les conditions d'utilisation et ignorez la page concernant les ressources de récupération des données.
Ne cliquez pas sur Terminer l'atelier, à moins que vous n'ayez terminé l'atelier ou que vous ne vouliez le recommencer, car cela effacera votre travail et supprimera le projet.
Ce contenu n'est pas disponible pour le moment
Nous vous préviendrons par e-mail lorsqu'il sera disponible
Parfait !
Nous vous contacterons par e-mail s'il devient disponible
Un atelier à la fois
Confirmez pour mettre fin à tous les ateliers existants et démarrer celui-ci
Utilisez la navigation privée pour effectuer l'atelier
Ouvrez une fenêtre de navigateur en mode navigation privée pour effectuer cet atelier. Vous éviterez ainsi les conflits entre votre compte personnel et le compte temporaire de participant, qui pourraient entraîner des frais supplémentaires facturés sur votre compte personnel.
In this lab, you will learn how to Monitor GKE with Datadog.
Durée :
0 min de configuration
·
Accessible pendant 60 min
·
Terminé après 60 min