
Before you begin
- Labs create a Google Cloud project and resources for a fixed time
- Labs have a time limit and no pause feature. If you end the lab, you'll have to restart from the beginning.
- On the top left of your screen, click Start lab to begin
Check a new dataset and model has been created
/ 25
Confirm that both machine learning models have been evaluated
/ 25
Improve model performance and evaluate the model
/ 25
Predict which new visitors will come back and purchase
/ 25
En un lab de desafío, se le proporcionarán una situación y un conjunto de tareas. En lugar de seguir instrucciones paso a paso, deberás utilizar las habilidades aprendidas en los labs del curso para decidir cómo completar las tareas por tu cuenta. Un sistema automatizado de puntuación (en esta página) mostrará comentarios y determinará si completaste tus tareas correctamente.
En un lab de desafío, no se explican conceptos nuevos de Google Cloud, sino que se espera que amplíes las habilidades que adquiriste, como cambiar los valores predeterminados y leer o investigar los mensajes de error para corregir sus propios errores.
Debe completar correctamente todas las tareas dentro del período establecido para obtener una puntuación del 100%.
Se recomienda este lab a los estudiantes inscritos en la insignia de habilidad Crea modelos de AA con BigQuery ML. ¿Aceptas el desafío?
Lee estas instrucciones. Los labs cuentan con un temporizador que no se puede pausar. El temporizador, que comienza a funcionar cuando haces clic en Comenzar lab, indica por cuánto tiempo tendrás a tu disposición los recursos de Google Cloud.
Este lab práctico te permitirá realizar las actividades correspondientes en un entorno de nube real, no en uno de simulación o demostración. Para ello, se te proporcionan credenciales temporales nuevas que utilizarás para acceder a Google Cloud durante todo el lab.
Para completar este lab, necesitarás lo siguiente:
Comenzaste a desempeñar un nuevo puesto como miembro júnior del Departamento de Ciencia de Datos. Tu equipo está trabajando en varios proyectos con diversas iniciativas de aprendizaje automático. Debes ayudar a desarrollar y evaluar conjuntos de datos y modelos de aprendizaje automático para proporcionar estadísticas basadas en conjuntos de datos del mundo real.
Se espera que tengas las habilidades y el conocimiento necesarios para realizar estas tareas, por lo que no se te proporcionarán guías paso a paso.
Las siguientes tareas de este lab verifican tus conocimientos sobre BigQuery y el aprendizaje automático.
Para uno de los proyectos en los que estás trabajando, debes proporcionar un análisis basado en datos del mundo real. Tu función en este proyecto es desarrollar y evaluar modelos de aprendizaje automático.
Por lo tanto, en esta tarea debes crear un conjunto de datos con el ID del conjunto de datos ecommerce, en el que puedes almacenar tus modelos de aprendizaje automático.
Ahora, crea el modelo de aprendizaje automático customer_classification_model para predecir el rendimiento del modelo. Ejecuta la siguiente consulta para crear customer_classification_model.
Haz clic en Revisar mi progreso para verificar el objetivo.
En esta tarea, tienes que evaluar el rendimiento de customer_classification_model en comparación con nuevos datos de evaluación no vistos.
En BigQuery ML, roc_auc es simplemente un campo que puedes usar para consultas cuando evalúas tu modelo de AA entrenado. Entonces, ejecuta la consulta para evaluar qué tan bien se desempeña el modelo con ML.EVALUATE
.
Después de evaluar tu modelo, observa el poder predictivo de este modelo.
Haz clic en Revisar mi progreso para verificar el objetivo.
En esta tarea, usarás las funciones del conjunto de datos que pueden ayudar al modelo customer_classification_model a comprender mejor la relación entre la primera sesión de un visitante y la probabilidad de que compre en una visita posterior.
Ahora, agrega algunas funciones nuevas y crea un segundo modelo de aprendizaje automático llamado improved_customer_classification_model.
Ahora, evalúa el modelo improved_customer_classification_model que acabas de crear para comprobar si mejoró el poder predictivo de customer_classification_model.
Haz clic en Revisar mi progreso para verificar el objetivo.
Ahora, crea el modelo de aprendizaje automático finalized_classification_model para predecir el rendimiento del modelo. Ejecuta la siguiente consulta para crear finalized_classification_model.
Haz clic en Revisar mi progreso para verificar el objetivo.
Creaste modelos de AA con BigQuery ML.
Este lab de autoaprendizaje forma parte de la insignia de habilidad Crea modelos de AA con BigQuery ML. Si completas esta insignia de habilidad, obtendrás la insignia que se muestra arriba como reconocimiento de tu logro. Comparte la insignia en tu currículum y tus plataformas sociales, y anuncia tu logro con el hashtag #GoogleCloudBadge.
Esta insignia de habilidad es parte de la ruta de aprendizaje de Data Analyst de Google Cloud. Si ya completaste las otras insignias de habilidad de esta ruta de aprendizaje, busca en el catálogo otras insignias de habilidad en las que puedas inscribirte.
Recibe la formación que necesitas para aprovechar al máximo las tecnologías de Google Cloud. Nuestras clases incluyen habilidades técnicas y recomendaciones para ayudarte a avanzar rápidamente y a seguir aprendiendo. Para que puedas realizar nuestros cursos cuando más te convenga, ofrecemos distintos tipos de capacitación de nivel básico a avanzado: a pedido, presenciales y virtuales. Las certificaciones te ayudan a validar y demostrar tus habilidades y tu conocimiento técnico respecto a las tecnologías de Google Cloud.
Última actualización del manual: 13 de febrero de 2025
Prueba más reciente del lab: 13 de febrero de 2025
Copyright 2025 Google LLC. All rights reserved. Google y el logotipo de Google son marcas de Google LLC. Los demás nombres de productos y empresas pueden ser marcas de las respectivas empresas a las que estén asociados.
Este contenido no está disponible en este momento
Te enviaremos una notificación por correo electrónico cuando esté disponible
¡Genial!
Nos comunicaremos contigo por correo electrónico si está disponible
One lab at a time
Confirm to end all existing labs and start this one