Calculate trips taken by Yellow taxi in each month of 2015
检查我的进度
/ 10
Calculate average speed of Yellow taxi trips in 2015
检查我的进度
/ 10
Test whether fields are good inputs to your fare forecasting model
检查我的进度
/ 20
Create a BigQuery dataset to store models
检查我的进度
/ 10
Create a taxifare model
检查我的进度
/ 20
Evaluate classification model performance
检查我的进度
/ 10
Predict taxi fare amount
检查我的进度
/ 20
Quick tip: Review the prerequisites before you run the lab
Use an Incognito or private browser window to run this lab. This prevents any conflicts between your personal account and the student account, which may cause extra charges incurred to your personal account.
#standardSQL
SELECT
TIMESTAMP_TRUNC(pickup_datetime,
MONTH) month,
COUNT(*) trips
FROM
`bigquery-public-data.new_york.tlc_yellow_trips_2015`
GROUP BY
1
ORDER BY
1
#standardSQL
SELECT
EXTRACT(HOUR
FROM
pickup_datetime) hour,
ROUND(AVG(trip_distance / TIMESTAMP_DIFF(dropoff_datetime,
pickup_datetime,
SECOND))*3600, 1) speed
FROM
`bigquery-public-data.new_york.tlc_yellow_trips_2015`
WHERE
trip_distance > 0
AND fare_amount/trip_distance BETWEEN 2
AND 10
AND dropoff_datetime > pickup_datetime
GROUP BY
1
ORDER BY
1
#standardSQL
WITH params AS (
SELECT
1 AS TRAIN,
2 AS EVAL
),
daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek),
taxitrips AS (
SELECT
(tolls_amount + fare_amount) AS total_fare,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
pickup_longitude AS pickuplon,
pickup_latitude AS pickuplat,
dropoff_longitude AS dropofflon,
dropoff_latitude AS dropofflat,
passenger_count AS passengers
FROM
`nyc-tlc.yellow.trips`, daynames, params
WHERE
trip_distance > 0 AND fare_amount > 0
AND MOD(ABS(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING))),1000) = params.TRAIN
)
SELECT *
FROM taxitrips
CREATE or REPLACE MODEL taxi.taxifare_model
OPTIONS
(model_type='linear_reg', labels=['total_fare']) AS
WITH params AS (
SELECT
1 AS TRAIN,
2 AS EVAL
),
daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek),
taxitrips AS (
SELECT
(tolls_amount + fare_amount) AS total_fare,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
pickup_longitude AS pickuplon,
pickup_latitude AS pickuplat,
dropoff_longitude AS dropofflon,
dropoff_latitude AS dropofflat,
passenger_count AS passengers
FROM
`nyc-tlc.yellow.trips`, daynames, params
WHERE
trip_distance > 0 AND fare_amount > 0
AND MOD(ABS(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING))),1000) = params.TRAIN
)
SELECT *
FROM taxitrips
接下来,点击运行以训练模型。
等待模型完成训练(5 - 10 分钟)。
模型训练完成后,您将看到消息“This statement will create a new model named qwiklabs-gcp-03-xxxxxxxx:taxi.taxifare_model”(本语句创建了名为 qwiklabs-gcp-03-xxxxxxxx:taxi.taxifare_model 的新模型),表明您的模型已成功完成训练。
#standardSQL
SELECT
SQRT(mean_squared_error) AS rmse
FROM
ML.EVALUATE(MODEL taxi.taxifare_model,
(
WITH params AS (
SELECT
1 AS TRAIN,
2 AS EVAL
),
daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek),
taxitrips AS (
SELECT
(tolls_amount + fare_amount) AS total_fare,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
pickup_longitude AS pickuplon,
pickup_latitude AS pickuplat,
dropoff_longitude AS dropofflon,
dropoff_latitude AS dropofflat,
passenger_count AS passengers
FROM
`nyc-tlc.yellow.trips`, daynames, params
WHERE
trip_distance > 0 AND fare_amount > 0
AND MOD(ABS(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING))),1000) = params.EVAL
)
SELECT *
FROM taxitrips
))
#standardSQL
SELECT
*
FROM
ml.PREDICT(MODEL `taxi.taxifare_model`,
(
WITH params AS (
SELECT
1 AS TRAIN,
2 AS EVAL
),
daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek),
taxitrips AS (
SELECT
(tolls_amount + fare_amount) AS total_fare,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
pickup_longitude AS pickuplon,
pickup_latitude AS pickuplat,
dropoff_longitude AS dropofflon,
dropoff_latitude AS dropofflat,
passenger_count AS passengers
FROM
`nyc-tlc.yellow.trips`, daynames, params
WHERE
trip_distance > 0 AND fare_amount > 0
AND MOD(ABS(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING))),1000) = params.EVAL
)
SELECT *
FROM taxitrips
));
SELECT
COUNT(fare_amount) AS num_fares,
MIN(fare_amount) AS low_fare,
MAX(fare_amount) AS high_fare,
AVG(fare_amount) AS avg_fare,
STDDEV(fare_amount) AS stddev
FROM
`nyc-tlc.yellow.trips`
# 1,108,779,463 fares
SELECT
COUNT(fare_amount) AS num_fares,
MIN(fare_amount) AS low_fare,
MAX(fare_amount) AS high_fare,
AVG(fare_amount) AS avg_fare,
STDDEV(fare_amount) AS stddev
FROM
`nyc-tlc.yellow.trips`
WHERE trip_distance > 0 AND fare_amount BETWEEN 6 and 200
# 843,834,902 fares
您应该会收到类似如下输出结果:
这样就会好一些。与此同时,对行程距离也做一些限制,从而真正专注于纽约市的情形。
复制以下代码并将其粘贴到查询编辑器中,然后点击运行:
SELECT
COUNT(fare_amount) AS num_fares,
MIN(fare_amount) AS low_fare,
MAX(fare_amount) AS high_fare,
AVG(fare_amount) AS avg_fare,
STDDEV(fare_amount) AS stddev
FROM
`nyc-tlc.yellow.trips`
WHERE trip_distance > 0 AND fare_amount BETWEEN 6 and 200
AND pickup_longitude > -75 #limiting of the distance the taxis travel out
AND pickup_longitude < -73
AND dropoff_longitude > -75
AND dropoff_longitude < -73
AND pickup_latitude > 40
AND pickup_latitude < 42
AND dropoff_latitude > 40
AND dropoff_latitude < 42
# 827,365,869 fares
CREATE OR REPLACE MODEL taxi.taxifare_model_2
OPTIONS
(model_type='linear_reg', labels=['total_fare']) AS
WITH params AS (
SELECT
1 AS TRAIN,
2 AS EVAL
),
daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek),
taxitrips AS (
SELECT
(tolls_amount + fare_amount) AS total_fare,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
SQRT(POW((pickup_longitude - dropoff_longitude),2) + POW(( pickup_latitude - dropoff_latitude), 2)) as dist, #Euclidean distance between pickup and drop off
SQRT(POW((pickup_longitude - dropoff_longitude),2)) as longitude, #Euclidean distance between pickup and drop off in longitude
SQRT(POW((pickup_latitude - dropoff_latitude), 2)) as latitude, #Euclidean distance between pickup and drop off in latitude
passenger_count AS passengers
FROM
`nyc-tlc.yellow.trips`, daynames, params
WHERE trip_distance > 0 AND fare_amount BETWEEN 6 and 200
AND pickup_longitude > -75 #limiting of the distance the taxis travel out
AND pickup_longitude < -73
AND dropoff_longitude > -75
AND dropoff_longitude < -73
AND pickup_latitude > 40
AND pickup_latitude < 42
AND dropoff_latitude > 40
AND dropoff_latitude < 42
AND MOD(ABS(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING))),1000) = params.TRAIN
)
SELECT *
FROM taxitrips
重新训练模型可能需要几分钟时间。当您在控制台中收到以下消息时,即可进入下一步:
评估新模型
现在线性回归模型已经得到了优化,可以使用数据集来评估此模型并了解其性能。
复制以下代码并将其粘贴到查询编辑器中,然后点击运行:
SELECT
SQRT(mean_squared_error) AS rmse
FROM
ML.EVALUATE(MODEL taxi.taxifare_model_2,
(
WITH params AS (
SELECT
1 AS TRAIN,
2 AS EVAL
),
daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek),
taxitrips AS (
SELECT
(tolls_amount + fare_amount) AS total_fare,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
SQRT(POW((pickup_longitude - dropoff_longitude),2) + POW(( pickup_latitude - dropoff_latitude), 2)) as dist, #Euclidean distance between pickup and drop off
SQRT(POW((pickup_longitude - dropoff_longitude),2)) as longitude, #Euclidean distance between pickup and drop off in longitude
SQRT(POW((pickup_latitude - dropoff_latitude), 2)) as latitude, #Euclidean distance between pickup and drop off in latitude
passenger_count AS passengers
FROM
`nyc-tlc.yellow.trips`, daynames, params
WHERE trip_distance > 0 AND fare_amount BETWEEN 6 and 200
AND pickup_longitude > -75 #limiting of the distance the taxis travel out
AND pickup_longitude < -73
AND dropoff_longitude > -75
AND dropoff_longitude < -73
AND pickup_latitude > 40
AND pickup_latitude < 42
AND dropoff_latitude > 40
AND dropoff_latitude < 42
AND MOD(ABS(FARM_FINGERPRINT(CAST(pickup_datetime AS STRING))),1000) = params.EVAL
)
SELECT *
FROM taxitrips
))
…可帮助您充分利用 Google Cloud 技术。我们的课程会讲解各项技能与最佳实践,可帮助您迅速上手使用并继续学习更深入的知识。我们提供从基础到高级的全方位培训,并有点播、直播和虚拟三种方式选择,让您可以按照自己的日程安排学习时间。各项认证可以帮助您核实并证明您在 Google Cloud 技术方面的技能与专业知识。
上次更新手册的时间:2024 年 2 月 7 日
上次测试实验的时间:2023 年 8 月 24 日
版权所有 2025 Google LLC 保留所有权利。Google 和 Google 徽标是 Google LLC 的商标。其他所有公司名和产品名可能是其各自相关公司的商标。
Labs create a Google Cloud project and resources for a fixed time
Labs have a time limit and no pause feature. If you end the lab, you'll have to restart from the beginning.
On the top left of your screen, click Start lab to begin
Use private browsing
Copy the provided Username and Password for the lab
Click Open console in private mode
Sign in to the Console
Sign in using your lab credentials. Using other credentials might cause errors or incur charges.
Accept the terms, and skip the recovery resource page
Don't click End lab unless you've finished the lab or want to restart it, as it will clear your work and remove the project
此内容目前不可用
一旦可用,我们会通过电子邮件告知您
太好了!
一旦可用,我们会通过电子邮件告知您
One lab at a time
Confirm to end all existing labs and start this one
Use private browsing to run the lab
Use an Incognito or private browser window to run this lab. This
prevents any conflicts between your personal account and the Student
account, which may cause extra charges incurred to your personal account.