
Before you begin
- Labs create a Google Cloud project and resources for a fixed time
- Labs have a time limit and no pause feature. If you end the lab, you'll have to restart from the beginning.
- On the top left of your screen, click Start lab to begin
Enable Google Cloud APIs
/ 20
Open a Vertex AI Workbench instance
/ 20
Run the lab notebook
/ 60
このラボでは、BigQuery を使用してデータ処理や探索的データ分析を行い、Vertex AI プラットフォームを使用してカスタム TensorFlow Regressor モデルのトレーニングとデプロイを行うことによって、顧客のライフタイム バリュー(CLV)を予測します。このラボの目標は、価値の高い実際のユースケースである予測 CLV を通して Vertex AI の概要を知ることです。最初は一般的な BigQuery と TensorFlow のローカル ワークフローから始めて、Vertex AI によるクラウドでのモデルのトレーニングとデプロイへと進みます。
このラボでは、次の作業を行います。
こちらの手順をお読みください。ラボの時間は記録されており、一時停止することはできません。[ラボを開始] をクリックするとスタートするタイマーは、Google Cloud のリソースを利用できる時間を示しています。
このハンズオンラボでは、シミュレーションやデモ環境ではなく、実際のクラウド環境を使ってご自身でラボのアクティビティを行うことができます。そのため、ラボの受講中に Google Cloud にログインおよびアクセスするための、新しい一時的な認証情報が提供されます。
このラボを完了するためには、下記が必要です。
[ラボを開始] ボタンをクリックします。ラボの料金をお支払いいただく必要がある場合は、表示されるポップアップでお支払い方法を選択してください。 左側の [ラボの詳細] パネルには、以下が表示されます。
[Google Cloud コンソールを開く] をクリックします(Chrome ブラウザを使用している場合は、右クリックして [シークレット ウィンドウでリンクを開く] を選択します)。
ラボでリソースが起動し、別のタブで [ログイン] ページが表示されます。
ヒント: タブをそれぞれ別のウィンドウで開き、並べて表示しておきましょう。
必要に応じて、下のユーザー名をコピーして、[ログイン] ダイアログに貼り付けます。
[ラボの詳細] パネルでも [ユーザー名] を確認できます。
[次へ] をクリックします。
以下のパスワードをコピーして、[ようこそ] ダイアログに貼り付けます。
[ラボの詳細] パネルでも [パスワード] を確認できます。
[次へ] をクリックします。
その後次のように進みます。
その後、このタブで Google Cloud コンソールが開きます。
Cloud Shell は、開発ツールと一緒に読み込まれる仮想マシンです。5 GB の永続ホーム ディレクトリが用意されており、Google Cloud で稼働します。Cloud Shell を使用すると、コマンドラインで Google Cloud リソースにアクセスできます。
接続した時点で認証が完了しており、プロジェクトに各自の PROJECT_ID が設定されます。出力には、このセッションの PROJECT_ID を宣言する次の行が含まれています。
gcloud
は Google Cloud のコマンドライン ツールです。このツールは、Cloud Shell にプリインストールされており、タブ補完がサポートされています。
[承認] をクリックします。
出力は次のようになります。
出力:
出力:
出力例:
gcloud
ドキュメントの全文については、gcloud CLI の概要ガイドをご覧ください。
Google Cloud コンソールの右上にある Cloud Shell アイコンをクリックして、新しい Cloud Shell ターミナルを開きます。
Cloud Shell ターミナルで、gcloud
を使用し、ラボで使用するサービスを有効にします。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
Google Cloud コンソールのナビゲーション メニュー()で [Vertex AI] を選択します。
[すべての推奨 API を有効化] をクリックします。
左側の [ワークベンチ] をクリックします。
[ワークベンチ] ページの上部で、[インスタンス] ビューになっていることを確認します。
インスタンス名の横に表示されている [JupyterLab を開く] をクリックして JupyterLab インターフェースを起動します。ブラウザで新しいタブが開きます。
ターミナル ウィンドウが新しいタブで開きます。これで、ターミナルでコマンドを実行して Workbench インスタンスを操作できるようになりました。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
y
」と入力して Enter キーを押し、インストールを確定します。ファイル ブラウザで
プロンプトが表示されたら、Python 3 カーネルを選択します。
ノートブックでラボを続け、画面上部の実行アイコンをクリックして各セルを実行します。
または、Shift+Enter キーを押してセルでコードを実行します。
説明を読んで、各セルの実行内容を十分に理解してください。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
このラボでは、ML のテスト ワークフローとして、Google Cloud BigQuery を使用してデータの格納と分析を行い、Vertex AI の ML サービスを使用して TensorFlow モデルのトレーニングとデプロイを行って、顧客のライフタイム バリューを予測しました。
Google Cloud トレーニングと認定資格を通して、Google Cloud 技術を最大限に活用できるようになります。必要な技術スキルとベスト プラクティスについて取り扱うクラスでは、学習を継続的に進めることができます。トレーニングは基礎レベルから上級レベルまであり、オンデマンド、ライブ、バーチャル参加など、多忙なスケジュールにも対応できるオプションが用意されています。認定資格を取得することで、Google Cloud テクノロジーに関するスキルと知識を証明できます。
マニュアルの最終更新日: 2024 年 10 月 7 日
ラボの最終テスト日: 2024 年 10 月 7 日
Copyright 2025 Google LLC All rights reserved. Google および Google のロゴは Google LLC の商標です。その他すべての企業名および商品名はそれぞれ各社の商標または登録商標です。