GSP972
Descripción general
Vertex AI reúne los servicios de Google Cloud para desarrollar AA en una sola IU y API unificada. En Vertex AI, ahora puedes entrenar y comparar modelos fácilmente con AutoML o mediante entrenamiento de código personalizado. Todos los modelos se almacenan en un repositorio central. Estos modelos ahora se pueden implementar en los mismos extremos de Vertex AI.
AutoML Vision permite que cualquier persona con experiencia limitada en aprendizaje automático (AA) entrene modelos de clasificación de imágenes de alta calidad. En este lab práctico, aprenderás a producir un modelo de AA personalizado que reconozca automáticamente componentes dañados de automóviles. Dado que el tiempo que toma entrenar el modelo supera el límite del lab, interactuarás con un modelo alojado en un proyecto diferente entrenado en el mismo conjunto de datos y le solicitarás predicciones. Luego modificarás los valores de los datos para la solicitud de predicción y examinarás cómo cambia la predicción resultante en comparación con el modelo.
Objetivos
En este lab, aprenderás a realizar lo siguiente:
- Subir un conjunto de datos etiquetado a Cloud Storage con un archivo CSV y conectarlo a Vertex AI como conjunto de datos administrado
- Inspeccionar imágenes subidas para asegurarte de que no haya errores en tu conjunto de datos
- Lanzar un trabajo de entrenamiento de modelos AutoML Vision
- Solicitar predicciones de un modelo alojado entrenado en el mismo conjunto de datos
Configuración y requisitos
Antes de hacer clic en el botón Comenzar lab
Lee estas instrucciones. Los labs son cronometrados y no se pueden pausar. El cronómetro, que comienza a funcionar cuando haces clic en Comenzar lab, indica por cuánto tiempo tendrás a tu disposición los recursos de Google Cloud.
Este lab práctico te permitirá realizar las actividades correspondientes en un entorno de nube real, no en uno de simulación o demostración. Para ello, se te proporcionan credenciales temporales nuevas que utilizarás para acceder a Google Cloud durante todo el lab.
Para completar este lab, necesitarás lo siguiente:
- Acceso a un navegador de Internet estándar (se recomienda el navegador Chrome)
Nota: Usa una ventana de navegador privada o de Incógnito para ejecutar este lab. Así evitarás cualquier conflicto entre tu cuenta personal y la cuenta de estudiante, lo que podría generar cargos adicionales en tu cuenta personal.
- Tiempo para completar el lab: Recuerda que, una vez que comienzas un lab, no puedes pausarlo.
Nota: Si ya tienes un proyecto o una cuenta personal de Google Cloud, no los uses en este lab para evitar cargos adicionales en tu cuenta.
Cómo iniciar tu lab y acceder a la consola de Google Cloud
-
Haga clic en el botón Comenzar lab. Si debe pagar por el lab, se abrirá una ventana emergente para que seleccione su forma de pago.
A la izquierda, se encuentra el panel Detalles del lab, que tiene estos elementos:
- El botón Abrir la consola de Google Cloud
- El tiempo restante
- Las credenciales temporales que debe usar para el lab
- Otra información para completar el lab, si es necesaria
-
Haz clic en Abrir la consola de Google Cloud (o haz clic con el botón derecho y selecciona Abrir el vínculo en una ventana de incógnito si ejecutas el navegador Chrome).
El lab inicia recursos y abre otra pestaña en la que se muestra la página de acceso.
Sugerencia: Ordene las pestañas en ventanas separadas, una junto a la otra.
Nota: Si ves el diálogo Elegir una cuenta, haz clic en Usar otra cuenta.
-
De ser necesario, copia el nombre de usuario a continuación y pégalo en el diálogo Acceder.
{{{user_0.username | "Username"}}}
También puedes encontrar el nombre de usuario en el panel Detalles del lab.
-
Haz clic en Siguiente.
-
Copia la contraseña que aparece a continuación y pégala en el diálogo Te damos la bienvenida.
{{{user_0.password | "Password"}}}
También puedes encontrar la contraseña en el panel Detalles del lab.
-
Haz clic en Siguiente.
Importante: Debes usar las credenciales que te proporciona el lab. No uses las credenciales de tu cuenta de Google Cloud.
Nota: Usar tu propia Cuenta de Google podría generar cargos adicionales.
-
Haga clic para avanzar por las páginas siguientes:
- Acepta los Términos y Condiciones.
- No agregues opciones de recuperación o autenticación de dos factores (esta es una cuenta temporal).
- No te registres para obtener pruebas gratuitas.
Después de un momento, se abrirá la consola de Google Cloud en esta pestaña.
Nota: Para ver un menú con una lista de productos y servicios de Google Cloud, haz clic en el menú de navegación que se encuentra en la parte superior izquierda.
Activa Cloud Shell
Cloud Shell es una máquina virtual que cuenta con herramientas para desarrolladores. Ofrece un directorio principal persistente de 5 GB y se ejecuta en Google Cloud. Cloud Shell proporciona acceso de línea de comandos a tus recursos de Google Cloud.
- Haz clic en Activar Cloud Shell en la parte superior de la consola de Google Cloud.
Cuando te conectes, habrás completado la autenticación, y el proyecto estará configurado con tu PROJECT_ID. El resultado contiene una línea que declara el PROJECT_ID para esta sesión:
Your Cloud Platform project in this session is set to YOUR_PROJECT_ID
gcloud
es la herramienta de línea de comandos de Google Cloud. Viene preinstalada en Cloud Shell y es compatible con la función de autocompletado con tabulador.
- Puedes solicitar el nombre de la cuenta activa con este comando (opcional):
gcloud auth list
-
Haz clic en Autorizar.
-
Ahora, el resultado debería verse de la siguiente manera:
Resultado:
ACTIVE: *
ACCOUNT: student-01-xxxxxxxxxxxx@qwiklabs.net
To set the active account, run:
$ gcloud config set account `ACCOUNT`
- Puedes solicitar el ID del proyecto con este comando (opcional):
gcloud config list project
Resultado:
[core]
project = <project_ID>
Resultado de ejemplo:
[core]
project = qwiklabs-gcp-44776a13dea667a6
Nota: Para obtener toda la documentación de gcloud
, consulta la guía con la descripción general de gcloud CLI en Google Cloud.
Tarea 1: Sube imágenes de entrenamiento a Cloud Storage
En esta tarea, subirás a Cloud Storage las imágenes de entrenamiento que deseas usar, lo que facilitará importar los datos a Vertex AI más tarde.
Para entrenar un modelo a fin de clasificar imágenes de componentes dañados de automóviles, debes proporcionarle a la máquina datos de entrenamiento etiquetados. El modelo los utilizará para comprender cada imagen y diferenciar entre los componentes de automóviles dañados y no dañados.
Nota: En este lab, no deberás etiquetar imágenes, ya que se proporciona un conjunto de datos etiquetado (es decir, una imagen con una etiqueta) en un archivo CSV. En la siguiente sección, se describen los pasos para usar este archivo.
En este ejemplo, el modelo aprenderá a clasificar cinco tipos distintos de componentes dañados de vehículos: parachoques, compartimento del motor, capó, lateral y parabrisas.
Crea un bucket de Cloud Storage
- Para comenzar, abre una ventana nueva de Cloud Shell y ejecuta los siguientes comandos a fin de establecer algunas variables de entorno:
export PROJECT_ID=$DEVSHELL_PROJECT_ID
export BUCKET=$PROJECT_ID
- A continuación, ejecuta el siguiente comando para crear un bucket de Cloud Storage:
gsutil mb -p $PROJECT_ID \
-c standard \
-l "{{{project_0.default_region | REGION}}}" \
gs://${BUCKET}
Sube imágenes de automóviles al bucket de Storage
Las imágenes de entrenamiento están disponibles de forma pública en un bucket de Cloud Storage. De nuevo, copia y pega las plantillas de secuencias de comandos que están a continuación en Cloud Shell para copiar las imágenes en tu propio bucket.
- Ejecuta el siguiente comando para copiar imágenes en el bucket de Cloud Storage:
gsutil -m cp -r gs://car_damage_lab_images/* gs://${BUCKET}
-
En el panel de navegación, haz clic en Cloud Storage > Buckets.
-
Haz clic en el botón Actualizar, ubicado en la parte superior del navegador de Cloud Storage.
-
Haz clic en el nombre del bucket. Deberías ver cinco carpetas de fotos para cada uno de los cinco tipos de componentes dañados de automóviles que se clasificarán:
- De forma opcional, puedes hacer clic en una de las carpetas y revisar las imágenes que hay en ella.
Perfecto. Las imágenes de automóviles ahora están organizadas y listas para el entrenamiento.
Haz clic en Revisar mi progreso para verificar el objetivo. Subir imágenes de automóviles al bucket de Storage
Tarea 2: Crea un conjunto de datos
En esta tarea, crearás un nuevo conjunto de datos y lo conectarás con las imágenes de entrenamiento para permitir que Vertex AI acceda a ellas.
Normalmente, crearías un archivo CSV en el que cada fila contendría una URL a una imagen de entrenamiento y la etiqueta asociada a esa imagen. En este caso, ya se creó el archivo CSV. Solo debes actualizarlo con el nombre del bucket de Cloud Storage y subirlo a él.
Actualiza el archivo CSV
Copia y pega las plantillas de secuencias de comandos que están a continuación en Cloud Shell y presiona Intro para actualizar y subir el archivo CSV.
- Ejecuta el siguiente comando para crear una copia del archivo:
gsutil cp gs://car_damage_lab_metadata/data.csv .
- Ejecuta el siguiente comando para actualizar el archivo CSV con la ruta de acceso al almacenamiento:
sed -i -e "s/car_damage_lab_images/${BUCKET}/g" ./data.csv
- Verifica que el nombre del bucket se haya insertado correctamente en el archivo CSV:
cat ./data.csv
- Ejecuta el siguiente comando para subir el archivo CSV al bucket de Cloud Storage:
gsutil cp ./data.csv gs://${BUCKET}
-
Cuando el comando esté completo, haz clic en el botón Actualizar en la parte superior del navegador de Cloud Storage y abre el bucket.
-
Confirma que el archivo data.csv
aparezca en el bucket.
Crea un conjunto de datos administrado
-
En el menú de navegación () de la consola de Google Cloud, haz clic en Vertex AI > Panel.
-
Haz clic en Habilitar todas las APIs recomendadas si aún no están habilitadas.
-
En el menú de navegación de la izquierda de Vertex AI, haz clic en Conjuntos de datos.
-
En la parte superior de la consola, haz clic en + Crear.
-
Para el nombre del conjunto de datos, escribe damaged_car_parts
.
-
Selecciona Clasificación de imágenes (una etiqueta). Nota: En tus propios proyectos, te recomendamos que marques la casilla "Clasificación con varias etiquetas" si necesitas realizar una clasificación de clases múltiples.
-
Selecciona la región como .
-
Haz clic en Crear.
Conecta el conjunto de datos a las imágenes de entrenamiento
En esta sección, elegirás la ubicación de las imágenes de entrenamiento que subiste en el paso anterior.
-
En la sección Selecciona un método de importación, haz clic en Seleccionar archivos de importación de Cloud Storage.
-
En la sección Selecciona archivos de importación de Cloud Storage, haz clic en Explorar.
-
Sigue las indicaciones para navegar al bucket de almacenamiento y haz clic en el archivo data.csv
. Haz clic en Seleccionar.
-
Cuando hayas seleccionado correctamente el archivo, aparecerá una casilla de verificación verde a la izquierda de la ruta de acceso del archivo. Haz clic en Continuar.
Nota: Las imágenes tardarán entre 9 y 12 minutos en importarse y alinearse con las categorías. Debes esperar hasta que se complete este paso antes de revisar el progreso.
- Cuando la importación esté completa, haz clic en la pestaña Explorar a fin de prepararte para la siguiente sección. (Pista: Es posible que debas actualizar la página para confirmar).
Haz clic en Revisar mi progreso para verificar el objetivo. Crear un conjunto de datos
Tarea 3: Inspecciona las imágenes
En esta tarea, examinarás las imágenes para asegurarte de que no haya errores en el conjunto de datos.
Verificar las etiquetas de las imágenes
-
Si se actualizó la página del navegador, haz clic en Conjuntos de datos, selecciona el nombre de la imagen y, luego, haz clic en Explorar.
-
En Filtrar etiquetas, haz clic en cualquiera de las etiquetas para ver las imágenes de entrenamiento específicas. Ejemplo: engine_compartment.
Nota: Si quisieras compilar un modelo de producción, necesitarías al menos 100 imágenes por etiqueta para garantizar una precisión alta. En esta demostración, se usaron solo 20 imágenes de cada tipo; por eso, se pudo entrenar el modelo rápidamente.
- Si una imagen está etiquetada de forma incorrecta, puedes hacer clic en ella para seleccionar la etiqueta correcta o borrar la imagen del conjunto de entrenamiento:
- Luego, haz clic en la pestaña Analizar para ver la cantidad de imágenes por etiqueta. La ventana Estadísticas de etiquetas aparecerá en tu navegador.
Nota: Si necesitas ayuda para etiquetar el conjunto de datos, el Servicio de etiquetado de datos de Vertex AI te permite trabajar con etiquetadores humanos a fin de generar etiquetas de alta precisión.
Tarea 4: Entrena el modelo
Ya puedes comenzar a entrenar el modelo. Vertex AI se encarga de esto automáticamente, sin necesidad de que escribas el código del modelo.
-
En el lado derecho, haz clic en Entrenar un modelo nuevo.
-
En la ventana Método de entrenamiento, deja los parámetros de configuración predeterminados y selecciona AutoML como método de entrenamiento. Haz clic en Continuar.
-
En la ventana Detalles del modelo, ingresa un nombre para el modelo. Usa damaged_car_parts_model
. Haz clic en Continuar.
-
En la ventana Opciones de entrenamiento, elige Mayor exactitud (Nueva) y haz clic en Continuar.
-
En la ventana Procesamiento y precios, establece el presupuesto en 8 horas de procesamiento de nodo como máximo.
-
Haz clic en Comenzar entrenamiento.
Nota: El entrenamiento de modelos puede tardar más que el tiempo asignado para completar el lab. El modelo no necesita finalizar el entrenamiento para continuar a la siguiente sección.
Haz clic en Revisar mi progreso para verificar el objetivo. Entrenar el modelo
Tarea 5: Solicita una predicción de un modelo alojado
Para este lab, hay un modelo entrenado en el mismo conjunto de datos alojado en un proyecto diferente para que puedas solicitar predicciones mientras el modelo local termina el entrenamiento, ya que es posible que el entrenamiento de modelos locales supere el límite de este lab.
Se configura un proxy para el modelo previamente entrenado, de modo que no tengas que ejecutar ningún paso adicional para hacerlo trabajar dentro del entorno de tu lab.
Para solicitar predicciones del modelo, enviarás predicciones a un extremo dentro de tu proyecto que desviará la solicitud al modelo alojado y devolverá el resultado. Enviar una predicción al proxy de AutoML es muy similar a la forma en la que interactuarías con el modelo que acabas de crear, así que puedes usar esto como práctica.
Obtén el nombre del extremo del proxy de AutoML
-
En el Menú de navegación de la consola de Google Cloud, (≡) haz clic en Cloud Run.
-
Haz clic en automl-proxy.
- Copia la URL al extremo. Debería verse algo similar a esto:
https://automl-proxy-xfpm6c62ta-uc.a.run.app
.
Utilizarás este extremo para la solicitud de predicción en la próxima sección.
Crea una solicitud de predicción
-
Abre una ventana nueva de Cloud Shell.
-
En la barra de herramientas de Cloud Shell, haz clic en Abrir editor. Si se te solicita, haz clic en Abrir en una ventana nueva.
-
Haz clic en File > New File.
-
Copia el siguiente contenido en el archivo nuevo que acabas de crear:
{
"instances": [{
"content": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gIoSUNDX1BST0ZJTEUAAQEAAAIYAAAAAAQwAABtbnRyUkdCIFhZWiAAAAAAAAAAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAAHRyWFlaAAABZAAAABRnWFlaAAABeAAAABRiWFlaAAABjAAAABRyVFJDAAABoAAAAChnVFJDAAABoAAAAChiVFJDAAABoAAAACh3dHB0AAAByAAAABRjcHJ0AAAB3AAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAFgAAAAcAHMAUgBHAEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z3BhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABYWVogAAAAAAAA9tYAAQAAAADTLW1sdWMAAAAAAAAAAQAAAAxlblVTAAAAIAAAABwARwBvAG8AZwBsAGUAIABJAG4AYwAuACAAMgAwADEANv/bAEMABgQFBgUEBgYFBgcHBggKEAoKCQkKFA4PDBAXFBgYFxQWFhodJR8aGyMcFhYgLCAjJicpKikZHy0wLSgwJSgpKP/bAEMBBwcHCggKEwoKEygaFhooKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKP/AABEIAlgDIAMBIgACEQEDEQH/xAAcAAACAwEBAQEAAAAAAAAAAAACAwABBAUGBwj/xABGEAABAwMDAgQEBAQEBQMEAAcBAAIRAwQhEjFBBVETImFxBjKBkRRCobEHI8HRFTNS4UNicvDxNFOSJCVEghY1VGNzdbL/xAAZAQEBAQEBAQAAAAAAAAAAAAABAAIDBAX/xAAsEQEBAQEAAgICAQQABgMBAAAAARECEiEDMUFREwQiYXEUMpGhscFCgfHh/9oADAMBAAIRAxEAPwD5L0uyq16rSMNacleztqVWoxjGy8gQVosOnMfljBTpei9J0jpV11F/gdLti6ImocD6ld/G9M7jk2vTqTCDckk8Nb/VaHVqTPK3QwDEAZXuqXwX02xoit8QdTBIEmlRMD2lJqdZ6JYk0ugdGo1aoGK9wZH1RfH63Wb3jxdPVUM0betVG5IYY+8JtAXWqWU6bDO9QgQmdZ+IOo3VRzK91St2A5ZSgD2wuK67aSSHVajuTEArPpS2vT0LWrUJe++t2xl3hsLoT2ULKo+bi8uX+rGNZ9ivJs6tWpNimxjCdySThIqdTrvy6qGx/pACty+jte4rWvRtMvpXVQjl9zA/QLnXFx0+3/8AT9Gtq0c1Lh0yvH1L6f8AMrkjsXJJ6jbNH+Yz903u0ZXtxcF3mpWvQbcR+clxH6rp9P6lY2zS28urIOPymlQ29sL5qOrW9MamnUDy0KHrrNmU6r/YYWZL+i+iH4ktaR//AJjdVADgUrUDE7TCI/F9qBin1Gr6Oe1sr5v/AIq93y2tT3JhT8dcuHltgB3JTPj6Gx9Gd8bn/g9NPp4lef6JR+N+pukUre2pj3JK+fi4vXflpt7blWx96f8Aisb7BM+K1bHt6nxb1qo7y17djfSnJ/dZn9f61WI19QeAf9LAB+y8oG3bt7kx2ATRavcB/wDU1iecwtfw2/geUeib1C+c+XdQuWnuHwP2WatWrOeS+8uCRmTWP91yBYg5c+qTzLk0WFIgQHl3fUSFr+Gjzje6ox0eJWLz3e8n+qhfbAeZ9P7rEzp9L/TPbdOZY0hMUxJ9Fr+G/tfySH+NaDd9NEy4tf8AWz6BAy0YD8o+y0U6DJw0e8K/i/yP5IJlzQGzp9gU5l1S7P8Ao0qU6IJEBdGjb0qLBWuJDBsOXFanxfsX5Iy06zHDFOqY3IaVqt9VU6aYLWned0bH1bp+lg8OiNmjH3XY6bY1KtanRosL6jjpAG5PZYskbm0uytTLWsBLjifVfSvhb4SFNrLnqTZdgton93f2W/4V+F6fS2Nr3Ya+73A3FP29fVephceu/wAR0kxTQGiAIA4ChyCJhWqMDK5lTZa3JmOVRBdk4b27ogOTlXCkrhKrkaNgT9inFZLt0DMR/wAyZ9iroExnHo5RwbOdH2IQWhJaY2/5dkwu8xBc9o7mIWr9oTIicaeSCV5zr3VjUe61tHRHle9px7I+tdWJcbSzw7Z7wcAeiV061pW/h1qzZc75WHJJ7lUgtM6T0xlEMrXQ8xy1h/crq1KzqktafKs9SoXHOT3UpkgzsFr7RraLgZmU9jT9EDHnlaKTgTlSWxkkLQ1oaMKNjhWudutIooohIpGZUUUkUUUUkUVSrUkUUUUkUJgEqKESCFJTXSrQBujnCMEHZSQ7LI3N0HcZytROFlY0/iR/p3WufyK1OALSDsRC4doDb9RcwDyukFd1cvqNItrMqNxnJVyqfbUwy4fHIlbQZCwsaS9rmnMZK10QQ2CZV1FBqKKLJRRRRSRC9wY0ucYA3JS7iuygzU854HJXMca19VgYYOOAmc77TRWu3VTpoy1vfkqUrYMZrrHS0ZMoalSh09mn560YC5lzcVbh2qq7HAGwXXnnfpjructlz1GAWWogcuO59lzi4klzjJO5KGeIUJXXnmc/TjerUdkY3XLuGltSCcTsukHA4WW5ognUPqkSkDQ5oEoXtNPMx2CTq01CGn2Vudqd53ZWL6bg2VhwJPKVUhx2kJbXFtUgGR3Vmocws2GdGtB0EaohKZVAJa/JOxQeKYxurbLvM4CPTdZnqtW6ldrmjB+qQ1zw6CZTZJMEkNPJQkCcGYVQ10mkUnPc4A8ITVe8CHbILc6nhrvlPK6X4AiXs2GfdWSlldWeG6ZB9VVs6XFznw6Yg7QuszpYrUZbDXETKXedMbaW4eSXO5hM5hZqmp7g17wwcHcFWxwtntfRdqIzKzVqZ8Jj2l+eI2Q0WVahgYPdZ8Vr1/Teo1K7BqAcOSOF1mkESNivM9IpVrWtTe4DQ/BPC9ONlmzGoiiiiyUUUUUkK4nWb3Hh0zjkjkrV1a8FvS0NPnd+gXmqhL5JWuZotx8nsOj2tCmK3VHjQMii0x9yiv8A4vFIfhrEso0W4JZgALyvxB1KoahbWqa5+VjD+681VrGNVV2lo2aFXb9sXry+vp6m/wDiGnUdNFhuKnD6hOkH0C4l3fVasuua+hhGzTAXGqXdV3lojQ3kn+gWV1LWdVUvef8AmK1z8VrNsjoVep29P/Kl7uIz+qzu6lc1MU6OnsXFKY0A4aAOya05H7LtPgn5F+WEufe1R5qoYDw0IPwj6g/mV6jjsYMBdCm0OBk6ewPdSOOTwuk+PmM/yViZYUhEgu9ytNOypNj+WCnAGO6NpE7Z7Lc4jN+SqpUGAYaB6QmaADjZG2dgEbQf90yM3q1TWhGGj2R6THvsrAA4+qcGqa0/RNY0THPPZWyBxk8o4wM7KWoI4EQjaYO3sVQajYBOf0SRgHumQPy/KgadLpIkdk0uLuMdlYFsG0Jwcdoj1S2NCc1sSoI1p3TmNyDyqpg8LZTpto0xWrbflbySi+vtrB0mspUvFrDA2HJKBoqXlbW/DRsOAFbKb7qprqbcAbALvdG6VXv7unbWdIvqO+gA7k9lw67t9O3HH7V0fp9a7r07a2pl9V5gAc+p7L678L/D9v0WiHVHNqXjx5qh2A7N7BM6D0Oj0Hp7xQDX3Tmy+oRue3suYLu58fXUdqdOCvP11vqO309frb/qH3Vgg7EFcbp98+rIrvYw8HSF0qIMeJVcIExAjCxhaFIVNcCAQcFSR3QlqKKKSnbLFdk4g/YLYZ9VivxMA598rXP2Ku2gjzET/wA2CuP1/qgon8Lbz4j8GMgBN6jeDp1k5+NZ2EZlcTplE3VbxHjzO8zi78oWsGtvTLFjRrdLm7kndxXSrESHQNfB7BWC2mzyiGDAHcpUkyXbndVqU2SU9jSlMiZmE8OgKRtMyU9pDVnb6fVOa0pRviQnUnEiTskU6Wp2eFqa0AQsdGLUUVFwAWSHxWeJpnzI0uGPzGfsUWoDBKkJRQEESFFJWkK1FFJCYUVRlUXAEA7nZSEopIVBwPKkVWkujiEDWvA8pynRL/oikBO4yVUJDWg7oS0/iGHiJKZUAdCORCtKAgoKzA+mQRtsowR9UYHlgo+iTbAaE/bCyUmnxC3UW9oRteBcaC4ucBsm/YaFFFEFEm4rtotzl3ASr26FBsNzUOw7epWO1oPuKhq1SdO+eVqc/mi38Cp0al3U11DDP+9lLu7ZbtNG2HmG7uyC+vQQaNudLRguH7Bc3AXXnnfdcu+8+guBcdRMuOST3VE90aArs46hKpQqKKtA1TGUi5xTdpOVoMLNeCGSHQf3RVHM5k7pdQmVKjnyTwlB8u2kLONbhjROXHPdKrOLAdJBnhNqQWCBCzuaPmOYWZ7PXqAbU0th43TmuLqe8RskuAcQQmUqjZgj3AVYOaaysXNLI3VACk7IVBwYZH2QGuC8YlYstdZZDHVi94jAC6VCvVFHSH+XYrjOqS/0Tqd15NEwO6LFuvRWFw/QWNqaiNiulZuNU6a5835SdoXmemVqdCuHPktO/Zevsa9KtApwQOUy+kp9vQaHNqBjJGDgArjhtJlchohgMyF1OttJotLRMHJWO1osrUCNQDowi2tR2emxUoAh7Xs4HYrcuB0ak+3utOohp3E4K76xTEUUXOuqzLmsbVlTTHzRz6ILTVvKFIw54LuzclA24rVv8mjpb/qfj9Fdra0aI8jfN3OStSk49704mm6q+oXP3PZef6g4UmGN17G8exlu81HBrYOSvDX/AIlcSMtcYBTKLNfl6vWFMkzqecklY3OfWOqNRH6KOZs55mUbXDAGAOy9HHEjhevWQJa4RqBEq8j+pWplUwACHN5DhKp9AO81LHJZyPZdo5k6sDG6sR2yNkAG42Mom7xC2yaBMThG0kEcxyhpNLnBvPqneH4ZmR7KxI09hvujaBON0AA/smMx7chUQmgAdvVNa3nhCyT6yjbP9wtAbQXeVs7o2tAwRkKUTodqAkbEIgJeTtJmFUibCKe26sNAPdEG5Eo05q25n9UYGFQEfRMaBOVKoAP90bW7K2AD+ybjeAJ4VAlMbDnhaGiTLjKW1q6FrRayn49x8n5Ry4qtxSJTpspUvFrfL+VvJKlGm+5qaqmw2HACjGvu62p4hvA4AXouh9HuOo3bLazplxkSTIDR3cuHfeu/HC+h9IrdRuqdta09Tjknho7n0X2P4d6HbdEs/CoDVVdmpVIy8/29Ffw90W36LZCjRGqoc1KhGXn+3ousvN135eo7SYxdXq+HZuAJBf5ZHC84xtJhggv7EFeruGMqUnNqxoIyvJVnUmVCBrDQcGNwrnFXV6datqu1nNNufr2XYDS4ecQ0bN4+qxdJuqFSg2kwaHN4dz6rpLNJGkt4pgdgFQLYP+XPsU8zGIQup6vzvHsYQS21NPzOYPaUxrwTEg+ytrYHzE+6gbmdR9lBcDss94adOmalQ6WtyTstKwdZs6l7aeHSqaHTMHZ3oUz7TyVVz+sdTdM+C3Yei7tC1FOl4bPldlx2MJ3w7Yus6VUVqempqid5C03TQ2lWc0aTq0n2Wt9jHNqu1PDW/KMAJb3EYTG743ChaXZ3UAM7lM8zhI2HCpgHykT6rRRsnvyPK3uU6QU6hnG66Vqx5bL8IbW0FLLoLu62DZZtWLAA2UUSqpMxwslbqoDtO6U9r9ZLTv6qjHZE9sw5azAjS8OBIMI6rgHQ4YPKKl8pROaHbhF+yCmBBgyCqgg4M9woKZa6WnHZWafm1NMFSHmBCgJO6poJaQ77qg1wO+OyENU5ocPMJVzG6EuGkxmFINNpbImRwlGk9jpYZb2RNqnWBGCnEkJ9wAaCSZ7JR1ioAdoyUb6sHACDUagI2KZKLU8QxDfN6o2PdyENMhog7qjWH+mB3TglaAQVfKRSeCcHCaSZEcrNmNSsnUZa0OYdLp3CVaNmp4ziexJ5KfeUX13MaDDQfMfRA6X3VOlS8tOnk+6Z9JuWW9um21Od3nYJl1Xbb0i930HcrgsFS+uSXGZOTwArnnfatxos6T7usX1HeXcn+iO/uwR4NvhgwSOfRVeXIp0xQt8NGHELmknhdued91y679ekLiNlRceUR2VGF1caoOBQiZzlWCEOrKkIqKKgVJJWe8DCzz78LRhY79pLQ4fVBjm1HQ0pDXDbko6gMzKRgOOrHYoxW+zzMaQfdAWgDO/ZU12e6OqQWgxB7rONS7C/DDhIwQgADSRO25RkhrQZhIruEgt5RPauRVR5DpBxwpSczXqdkdx3UaGPLWOdDuSuvaWtq+2c3V51qyCMBY15B2jKU5pbqhuDyjrnwqugbDnlHIc2NgVityVVF1VpEeZq7VCqbam2qKga8flHKx0G0qdNri7fcLNcPZ4p80tOxC52/p0x6hvVqNxQc15DXRjkFYX3xNMNpjQ5vI5Xn6bS6ph0ZwVte40yDOogYKfwI9L0CuPHJrkl52nhelBBEhea6A6jeMDardNZuQ4YlehqvbRoue75WiSsNxh6zei0tjBio7AC8xZXRZeNeTuclI6v1A3l4X7N2A9FmpP8wK6Tn08/yd7cj6JQdqYD3RVHinTc95hrRJKydJeallTJ7JfVbylTAouGpzuOFyrvz9OJfV63U64AllFpwO6bToUqboP5RMJtw5lvS1ARPHquXQpVLi4NQuIB4XLd9u1np+Ry6MK2GDJyFQIO8qgQHTwvpx4Kc0TkYjYp1OoAQCfN3WZpnPCIAF0DC1gro1qDKtMOaR4kZAWMS12Pm2R0qxBAPGxXQdbNuqfi0sVRuNpVLn2L7+nPbJ9SmjMTMKiCHeZsEIo7HHJWt0CEbJjAAdvcIA2RKYwc7wmCw1g7fdMaMgFU2dIATabCd1GI0cJzW8lRzQyIyjYOUacQthE1pBHY7Iox6I2t7hKkUA2I57pjGqmtHKaxsYBmValhv0HojY3OdkTW5z9St9jasqfzKx00m7+voEW4sSytWlhrVsUW7A/mPYInF95WGNLBgDgBMqOdeVAGjTSbhoGwC9L8K/D9XqVcNZTeaAzUeP2lcOu9duOD/hH4bq9SrB/hxa08ucXASewX1Wz6fbWVsWWrPAokAuDZye87q+m2NCztmU7amGUGsAIkmfdbabTUcHukMHytP7rh11rv9eoloxzWyXP0nYOMkLiddr16lwG29U0wzHOSurf3NSnFG1ZruHCQDgNHcpVW3ptsnVbsNa9rZcRgSsRPNC66hMOqyO52Q/irsnzAlo4IkLo0aRdbtrmm8U3ZB9FLmmD/AJTyWxvH7hNa5s/JLL6k8aa9Itj81MwfsurYXj2iGVRcUxwcPaP6rhG31EkkT3H9lTQ+k8bgd2oxXL9PY06wrAGk6CNwUbXO2e2PULk2DzWpiHzXbtONQ9Ctrb4NOmtSc1wweQpltBlRLZWpvy133wmISKQoopFgODu4KCpSDg8H5Xb+h7p6ik4bqJZULT9FbKL6jg1oweV1n0GPdLhPomNaGiGiAtaMZbeyZTy7zOWmIwESiyQgFEAoopIqcAVah2UiywHZW1sNg7hQ43KJuyUprYKJVmVaEiiiikiiiikkAqoHZWopK0iZhWoopM1VkOlSlJMcLQWg7hQADZa8hhNUAMHeVNLSDPaVdaSBGUl7jEDJKefoX7MoNwE+M+yVQaQPMnLN+zAvJa0kCTGB6pFFjbai51R2TLnO9VpXF6pcmq/wqZ8gOSOSqTVbjNc133lfy/LsB2CZUqttaPhUz5yMnshbptaJqO+d2wWBzX1Zc50E5hd+eXLroxzvXfcqEmN1n/DmMuIVCh2qFdcjjdatSE7rObd4yKhwgDa5Plft3UGs+iE42Czzct3hyWbmq3DqX1VibIQzO3G6zU71hMOBb7p7atJ3yuElWLVz2S6rSGu/NPCY5zW/MQOysgRvvsgxwa4LXGRB7LLUaQ3X+VbuoUyx5nbusGouaWDIUOvtTKokNATS4HylZDNN0gZ4VmoSSTsjqaeesMrOMQDgJBaSyTJHEcKPdtpMJ9OsBSIMk/oj6a3yrOAYEtkjYplJztYglh9EwM1NDmlJA/mwSs+WmzGjT4ZD6h1epV+O01AQ3HbhJuHEQ0OlhQh+hoDRJ7rNbjpGtTLACICxOnUdOWqmPc4TAA7J9q1j3kbdwucmN7rpdFtTWlz2EtAxhbrmzaLcuI0uJkA7rd8PXlJrG0QQHDBBxKX8U1mNDY8p7hal9KRv+HbV9KmKmoOa4bchZfizqJptFvSdv80fsh6FeC26TUqvqBwAwJyCvKXty64rve8zqJVxNus/J348oHAk5TWGDuszMgEmfVaaM4BE9l1rx8+3rfh67IttDtmqdRqipceI6NLRusfTqT6NsXOETt3We+rH5GmSd14+rtyPo/HxZPYDcG8r6R8g2XZtKGloXP6XbBuYyV3KFMBYro/EAdq2EKwc55VBo32KJpJP9F9WPnjac+iIfoqxp9SiaJyFqQWmAf8AYWyyrGjVDifLyFkZ9vVOY0zgj2Uo617btrN8ajuRJjlc6IK7Fgwtota4+wKz9Qtwx2umBpcchZlz0bPyxNAPMJtMCELW7YkJoxHC0ytpLcBPa4wM4CUBJkpzAMAZKdJ9FhcRjHdb6dEATv7rNbOJIacj9V0KYGBsi1pBbNduN0upavbJB1NW2mI4TS2RuiU45AEJrB2W19sKnyjzBVZWT7i4FJojlxOzRyStazl0fS7E3dUlx0UKfmqP4A7D1Wy4qNuqzadszRQbhoG59SruqzRTbZ2mKDD5iN6h5JXQ6B02vf3lK3tmF1Rx42A3JK49979OvHOtnw70Kt1K8bQoNho8znHgcr670fptCxtadK3aW02thxduT3lK6B0mj020p0qM6xPiPOC8rttaAMbLz9dPR9ei209UcMGw7+6K4rMtqL6tZ2ljRJKavNfEV1Qua34F9bwwIJdwT2WPsHdQq/jnW9bplam92oBzQYJHr7Lo3Fu65DKNT/IEGp/z+nssXw/0htg11V5Dqz8AjYN4W3qNyKVIsb85x7KtLmdcvwGihb4aMEjC5DKr43JPdXdCXnOVdNh0B3PC1IsaLRtSq18GSNgY/Za20G1NJqDQ041DafVMoWb22rbkPyPMQBJhMNOo8eMXhrKgmIgE+yhSGUXUarmzBbkf3C6dJzbpgDzFVuxHKQaWuk17XatO45AQtJo1PJBMSCjFrSKVbS5rhM7FLFvXpuDtRdB2C22tYV6WoCHDBHYpyvKjA03FzQSC09iiUUWSiiiikiiiikiiiikiiiikiiiikotBUAgK1nuqugaeTypA/FtDy2DAMLTTeKjZbsuUx4fXAePLuSeyN18G1SKQAZstWT8DXUUWCjeA6nPOAjtb5lcubs4cIyrWxRVqxKknsgrUUUUkUVT6K5UlOnhCXEQSMcoiVY2Ui3aHDJ+yFrGNy0ElHoAJMQUQEDeUpTQdzhEos91cNoUy477AdyhEdSufCZ4bD53foFy6LQJe/DWqiXVqhc4ySZJWW/useGz5Qu3PP4c+ui7m4Na5BPygwAn8SFy2u84PqujGpozC75jz7tGds7IWtAyFYHHChGMbqKKYVCYyqc2TMwpLKEt5R8IM6vRQwt9Jjt2hZ32LHGQS0+i2wojVjk3FrXFM6amtrcgFMsbwPaGPIDm4MreQIIA3Xn7uiKd4ASWtJmQtT2zZjp9TIfbmAPdcOnAP7ldGvYV/DLqdbW2NiuJVc+k4g7jcKk1Xq/Z9WCSUsNBaYMpH4khpDm/VXSugPLsCs+NXnKsxOkjOwTWkMZpMfVLZXo6i2rgHkJTqzQ8gyW8E4VZTz1JWlrhTadRxwq1AkOgykvq06hA1AeqKlcUnVNEhoAiSseNb85+WnS2owu2I3SaLgJBGoI69xSNDyw07Y2KzUqwpDUHCSiz01LIdqLnQB9FqtqZ8YaQc5WKlcU9Ul4BndbqN9Q16fFDSOVm61LHpejU6Lqw8Zv19VyviS5Na7NOlljTAKV03qlGhcOD6ocDgHhD1N9J9XXSezUfNgrONSwiq8UmNY15M7jiVnnU6EupWFR51Rq5IRQODjuuvH08vy33hzCWy39FusCHV2A991zmTqkrdaNLqjQN5wjv6Z+Pb09Vd1mMoiMNAyuNbk3FYv4nCd1FpZbhky4hH0qjopjGV4p6j6trrWlMNaF06DdsZWOg3YbLo0mwFmi/T8KgbdyjDYPf0VQOAE1oGn15X1nzwgfQImA+0bK9I0kkx6KwOBsmUU1gwDH0WmiGH5wfSO6zsaW5ggRhPpkc/cJ0uzZ1AWNHbhaKjQ5hxMhcy1NQeZrS5nJGwXQc/S2SY9Fzs9tfhzNJDi2OUynp5/RC52p5M4Kg4MrbODMAxwn0XadkgOlx59Ebck9+yS1036qoJEe2F06RBI/dcemfMOV1qDpghVUbdMQUwA77hKY4OHmweE1rocGjJOAOSVk06lTdUe1tMS92AE+7qtt6ZtLcy45q1BuT2CuvUFhS0CDcvHmP+gdkixtn16jWU2lz3GAP7rHXX4jXM0y0pCQIyeBlfZvgvof8AhvTWvqU/CuamXE5McD0XP+D/AIRoWZpXt3T13DQHM1zDHd47r2jPHDgHeGW8kSCvP11+I7yYYxoaIGyp72sEkxCXd3NO3plz3AHgLlVb9ngms9sMG3BeVmTVrV1O9dRs3OpNJqOw309VwOjdMde3fj3Xmp03aiN9RTumVKvVPxNvceQnzUzyM7L0lpbstbdlGkIa0ff1VfShlV/hsJ+y83fXMOc9+SdguzfVRpOdl5m7Bq1IbvKJGoS1xq1BxK10qfiVWsBgE7obei8PawNknAC79vQbZWp10jUcTJEAlNqMtqNM0C17NJ2MEwfVKp2zatqWl7wWkwNWFq/EUvC1Plg5DgQQjpvpPZ5C0tP6o1a5gozTD6hILjpA5CEeG1hAqedh2PIWyuKIoubEPBOkAyVmoWor1BVrMc2OI3TOheWqxaQ8uGxGVuSqFNtNsMH3TVm1IooopIooopIooopIooopIoopPqpIoqLgEPiZgNJKkNc++JD87cLbqf8A6PuUq4pPrNjDY5TE5dzLbcvb8vMLn0PGuHhtNsA8rruoupnRUEtdj0WilSYxsMEDkrUoZxZM0BhMtG/qU6hbU6Dg5oynEACTskueXH9lDW8GQosFOuWh5e6A1FTuPE+Wpg+iPE62qJQ1lvz57wibr2kH1WSNRQKKSQFFFFIqq1ziNOwTGiAArUJUgVXBjSSYA3K4V1WNxVx8owAndSufEeabD5RuRyskik3W7fgLrzMYtDcPFCkWj5iMrjVX6nGVpva2ppky4nK5xcvRzHn76PDmyI3XRDtNOXFcdrvMPddcNDmAHZNZl0bHh4kK5M+iEQ0ADZXKGhFUQhEBX5pxspLEqBQSrQgBsE+qFwJJnZMKhiFIrR6lYeq0NdEv3c3IXQe1xA0mENVpcwt3nBVqxg6bcGralsS4YXCvgRcvDsZW+g42fUSwghjjsldbohtYPa0gHMp/Ln+Mct7QcgoaZY0+cSmtbJMcLNVGl2OeU6zDwyk6CBOVL1lINDYIPCQx5aP1BTK9YVKIDvnGxR9NzCqFvSJ/muLWHkIH2zNRFOpqEp9tOgzmUu7tyyo1zAWh3HqracZ/w/n0l2AV13dFZ+B/EMeTHBXMrUajCHOO69VYFjOjvc94c3TgLN6a55m48wy1DnbEtG5C1f4fScA5p33HKZYuBcZwHHC21NAiN52XHvuu/PMYB01hcG6iJ5C32/w6bhn8utDgYIKYBoh28Fes6HRbdUy+NOoDI7rnx8mtdcSPnt3aP6feut6pBcOQmsGAur8cW/4fqQqSDIyQuRauNSnIyQvRLry/Nxl9NDRmF2+k0Y87tgJXIptiJ3K7rHChYR+YjC4/L1+I6/0/x+9pNSsbm6MbNMBduyZDQFwul0iHFx5Mr0du0QF569f5b7dsmVtas1s0gZWkLEHT8K0xpABWgNYWSCdY3EYj3SBMz2TWjyTmTuvrV4cNpsY5pPPAVAEHaAgbMjBAPKeykXKtQ/Fc5gacgbImglox9VA1rTkiVZqtGAJPY7K1Nlo5zRp1EN5EwFLquKjtLdgsjnvd8xgDYKmyYhUn5WntdAxuj1bA4SmYxzurkyJGeydRoP0TWER/VJBmOPVMkA+qtDQ0jjJWhjyIzBWVpkAJjHQ7TPsnS6IrvDQQ6Su3Zt/w62F3c5uqg/ksPA/1ELF0W1ptt39SvhFtSMMaf+K/gD0UFar1G5dcVzvgAbAdgs9dZ6ak/B1EOr1C58veTk9yvqnwH8OsoUm3lwJrGNIiY7Lynwh0c3l21+gmk0jjcr7PZWjbai1rRmBjt6Lz9dY78zGilOkTk87rN1G+bbN0s81U7Dsm3FTwacNBLjgQCcrCzpz6pL6sDVkh2SuefmlzGNfd1zUuHnw25dH7JF/ruKktAZTbhrBsAtPV6ptqrbaiwuYBLiBElLsWur3FNuiQSJE8creh1uhWItqHiv8A8yoP/iOAttaqG+Vp23V3NYUgGg+Y7DsFyK90GhzQJcefVY+/bQryoIOd9lkoUS52lrZcdk+3t31jqgmNwurZMYG/5TmOG5cP2UXPdZ12VKLWVGtecuPLV0rx9Slaywan4BMx9VT6VKtcglztbOOFpcGuIDgCRkArKpbXa6QLmkkgSIRGlTIgsEdoTIUUGdtsxtTVHsnafUhU94aJOyzPv6LW6iTHsszqbjWdde2sCFa5/wDitCNnA+oWqncU6gEHJ2BWmTlFFFJFFFFJFFFFJFFFFJFICiikiikqg4HYqS0NQlrCRwESXcO00nH6KTnuque7zGR2V+ITjhJ/7KkkmG/dbjNLv7l9Ol5TBKx21xWqkjVnv2W6tb+KyDwslyRbtaynAncpRlWoXANBkDc91KLiMfZIol9RuoiG7A91qFMFgcDpPdBwwXFcRAIW2zrVnvAePL3SbevTosiq2Xd91rtaza7C9uCMR2CKRPuabaugnPKeuU7w61yHN8oG8LQK5q1wxmGt3KMTaohYdQk7Hb2RISLndUuvDb4VM+d257Baby4bb0S4/McAeq4Mmo8veZJySVvmb7Z6uBaQ2XO+UblcXqHUHvrHwzDW4Cb1e+BJo0jDRuVymN8Q6eSu0c7THXZOXZ9UIuGO9Chq2bx8pB9Fiq0KrMkFdJXK866VOo0PBJBC6tC4p1ANLvovHl7m4kgomXVSmcEhWjxx7UkxhQAY7heWt+tVWHz+YLpWvWaFQw92j3Qo7SucLNSuGVcscHDvKc2czlRHKiqR3VFwaMlSF+yhMDKEGdlTsbmAhCc4NEuMBUCIkIKzQaZnZCwHQNLt9lKOX12mAWVRu0pVUG7s2PwdIyF1eo0jUtHt0yYn6rj9FqhwqUH+sBP3Gepl1ybmWOlojuUh5JbJyV0+rWvhN1N2O65QzDTsn8M9TKhdhp2nBUrUwW6gcqNjWWn6JdVr25PyqqldPpjqbrcte3IGI7pD2vcxxdMtOEzpjWGm6HQT+63tpiraVIPmG8rNrpzHKqNdUpQ7jYrT0lpq0jQcecZQDWKLm6ZA3Q2gfb31JwHlOYXKV1sxqqWopPLPzDhZH1CytJJgcLRe3PiXzjsFjqgueSPlXOx03Y6lCu2rSIJxyF0+mdQq2lPTbueHTgbj7Lz1Bp+WIB5Xf6VaupVaZLdQOVxzxb+2L4mbXqhte5IcT+i5dk4Bpa0aV634mtfG6eXDBbleOsZ1lp7Lv8d8o4/NPXp1+ntFSs3VtK6d44Go1jNguRTd4OWmSuj02i+s41KmB69ln5J+T8F9e3T6fTgDC7Nsw4EQuYx4YIpiT34RGrVIy8j0C4+Nr0bI7ratNuC8CPVE67pbNeCeAF50xu7J9UhtWoXkNpDSOThX8YtfkhtZm2lPNZvhw0Z3ysYac8gblTV9CF9J46eK5nYBNbUPJMH7LM1pAk/RNZJHZIPbnJ2RAjVvKGmQI1Ax2RyO3sEahahsrac/0Si6SANuyYzDp39E/Yw1uPdMFQAbTKQCScblMDSPmETyojBzKNhkpQIkBG1w/wBlDDwR3XW6FYC/u/5jtFtTGqq/aB2HqVxcyAV7zpXRXVfh5raNQNqVAXOBwD9VvmbNV9TXC6t1A9SvaVC3b4dnR8tNgwANpK6lmG+LSt6bNTnEAce65XS7QitUZUIa5roIK7fTK1G2uqz6zwKmnTTPAHJlefrdduMx9p+C6NhQt6X4S5pucG6SyP6r1kgbmPdfnKjdOpVS6hdEScljoldS06x1SneW7a11VdSJkl1SRC5Xna35PveFF8np9eq/jXtF091ENwQZEptv1zqAJJq1C3hHgvJ9EvenW1y4urAhx3LTEo7Cxt7QE0ASTiSZK8jadWuHafGualInc5IW/wDGVt2dQLm9ySFjfw00X1WqKz5EvnvhHYWjagFS5qhsfl5WI3dUyTcAk8kBKfdXA+R2qOQAlSvVM0lrfBe1rO2DKaTjBBK8JcdZvKLiC0wNzpwkU/ie6DXCQIyQW5Vg19DkRJIHqo0tcZET+q8I34squpNwHTjICfT+IjP8ymwHuFYte1kE7iVZMLyA6sKjS6nRJHcEJtLqLXDzNqGdwMlWF6K8MUHEDK5VxSe2221NP5hkIQ+i9oNQXDWnlxCsmyHl8WpHbELneZuunPVkxynVSwatJc0HK7Vi/wAQUXtaTHYJYfYNGgvI9DC12xosaPCruazeIELprFdJRZhe286TVE/VU6/tmu0uqgH6oDUoswvrY7VmIzdUAJNVke6kcos4vbYmBVar/F0P/db91I9UTCSby3H/ABWpL7q3ef8A1ACk0PqxsEs15xCSKtvOLlp7KaqB/wDyAn0DfEBGlwwUYbS3Do+qzF1CP/UNUa+iNrlmUFqDqbT8/wBJReI04BBWLTR5uWfomMfSYZFemlF1XMe7ILfZRlNr3aWkjCqo+3GXXFMRuli/tqbpbVB4mCkLDm/JJRGyp1NDqgxOe6yvvLWdRqATzBRnqtuxoaa7IG2CpOm6jSqUvCAAaNgMQsD7Oo0EAkgbLP8A4zatdP4gAj/lKYeuWkSbgQRiGlWVauhaPdVHjAimDM910ZoUASIbIggLljr1lsbgn0DEq56909nFR59AArLVsPAALzSEEnAKfb0X0qJNRwa05cfRcV/xJTJIoWwB4LjJWap1OrXM3NTy9hsnKtevtbmncavCMhuJ4QXd7Rth53S7ho3XkR1x1swstobKwm4r3FQ1qr4nJJTONF6egr3JuKpfUMDgcALl9R6jpBp0T6ErnXF+SNNMwOSsrSXHuSuk5cr0PL3QMuK206YoU8/O7daOn2gpjXUy87DshvR55H1W2WQuIBPdJfUMEyjeZ4Waq6AtRmqJa7DmApFS3pOE5Z6pgkBKqElaxjbGWpYudmm8OH6rNUoVqe7SI5W8Og7wjbXeDjI7FV5U7c6nUuKUOpuePZdC26/c0CBWGto4K6dpQpXFMPe0MfxCX1Do7K1P+V/mfoud6947TnYfbfEVpVjxAWO/RdNlalc0wWPBB7FeG6h0urbtDmMe4jcjIXPpXVe2cNDntI4yEs3mx9QaNLYCCoeH5BXjLD4rr0obcND29+V2KfWrS/cwNfofyCjGXcIAYYEiENu4BuAd8oqbmOaNDw4AcJDKhpVywiWnIKG42VI0GdoXlKhNt1PV+XUvVEa2niV5fr9s6m5tQbTBKeftnr6dq/pMubUACZEjC8hcUvCruacZwvY9CrCvYtEyWiCuD8Q2pbdlzRg5TL7xmzy51xqjYfHKoVMERPBQVQ9jocY7IQ45kQulmuUrVbOLDtgrr2tVrHQ/ZwhcSzcHAt54Wqm803icwvN8kyvV8eWNNR+ms5v5Ui7qPYadQEFoKO4ggP77+ixPa59JzXfKMhYn7daeXtrVy5uJQOcW1NMJFm9rY7jBC2hgdU1gY7rPV9tczY7vSLXxaHmAceDyut0oVGPcyo2Wt2K5VnceA1jqYzyF6KzqCrTD4g8rh01PSdRpirZ1G+hXibW2NOq9wEmdl7PqF0yjScDlxEALi21DUC5wiTMLfx7B1NmE2tqC7U4aj2XSptAgduAo0NaIiAio6nPIA1HiF0s37E9fR7IAQucPp+izX1wLNp8Uw7hq4VW+r3lTQwljDwEeK12q9+ym7RT/AJj+wQsp3NyZqu0MP5W7oOnWjaDAYl53JWu5rtoUi9x9lm1qPyFkDKtgBOTBULi7LpcTuowdsxuva8xoxjeNo2TGk7c90sGDEQmMx7cFKwxruETonB+yAE7cfqoTnCFYYCI2n0RhxBABgpdMSDJghNp03QXhupo3KQvUdUn7oy4uOfsk6zn9CmNzkR6qGGNGd8prIBk57hKLyDxHoicS0NO85gKawZd5iV6DpHWbxtLwKNUhjRELzYIJyPorY4gy0lvqDCZbPoWSu9cNrm4NWmS5zsmeUQNzU/4D57tIK4jKrx+d/tKc26rt+Wq8D3XOzWpcdWn49Gq17adVj+JYY+6dd3FWq/VVbUkYnSf7Lls6hdtEC4qeglPb1a+AH/1NSR3Mo8afKNVCsA7D3tJ33C6dK7ewD+dUDeMlchnWr8f/AJB25A/sm0+tX0ZrCOPKD/RXhVOpr11HrT/Aaw21sdIw+XA++6g61Vbs4D01n+68zS63fGJewgb+Qf2Tm9aupz4RH/8AjH9ln+Onyj0rOvVYw/P/AFlPpfEFwB/mkf8A7ryzOtXESads71NMJ1PrTi3U6hak9vDH7K/jq8o9KOu1zIdUeR/1AptXqjDSaWAlw3JIJXlh1oGJtLafRkJg6s072lH6SE+FXlHoXdS1mXNPYbJ9LqwaAND574K82OrUebOn9CQjb1Oh/wD0o/8AmUeFXlHraXXdMatbj3gLRT+ICD874/6QvHDqVsdrd4//AHKNt/bH/h1QP+pH8dPnHsm/EDSINV5HYtlOHXqThBef/ivGMvrTnxh9QUwXtmTh9YH1hH8a83sB1a2qvLn1DJ3GmJWun1m2pt0h0D1BXiBeWhGKlWf+kIhdW3Nep/8AFXgvJ7dvWrQOnxGA7iWlaR1i0reWrXpAf9BJXgxcWp//ACD/APFMbXt5AFz92lPgvJ7U3lg3zMuGFw2BBEqDqlEiA+mB9V49ta3I/wDVM/8AiUYqUOLpn2KPE+T1v46hGKtP6kohe0o/zaf3K8m19KcXVMpmtkf+opK8Rr1LLuiRmrT+hKjrqkT5atOPcrzA0bivS+6Maf8A3qZ+qvFa9NTr0onxaZd2nCsXTBP8yln/AJl5oAcVKZ9ioGmMOZ91eJ16YXTRuaJ9dSv8U2cmlA28y8yWE7R91PDd2Ri16J1/TZOoUzPYylO6oyYDQQvPPY8flKrTVH5TC14wbXo/8Qpub8jBPJKqlXYX5fTLe0rzpL45VDUOCjxh8q9Q+rRc2NVOf+pZK7Wv/wAt1IRyXLhyiAn/AMq8YfKukbN7jJrUf/krNoQNJr0o/wCpc4ROf3Ru8Fok5lOBsFrTGXXNL/5JVQW1P/jB57NCVRZTrSKVMuPfhSpaubOpob9QoULrhoaRTB9ys5rPLsnCU94a4tGfZL8ztmn6rpIzWsVg0yRJ4nZVUun1ME47DZIbRe85GfRb7Xp7nEF3lH6pxm0qg1z3QGknhduwtBS8z8u/ZDSosoRoHueU8El4IMt5WsZ1rJMQMLJcUYEzJ5T9QGScKagRwha5VWm5m4gLKWh5XUuwarw1v1KzvtdLC4kMAytC+2FzSyS7ZZKhk9gn13gugGQkOM4XSRx6oNyrGMD7qaVssLY1Hh2guaOE30J7dXpNQU7fS5onu4LZRJqElogKqTdTNL2gDsntaGiBgLydc+9eyd+sBUaxrPM0QsVx0qzu2S+kM8jBXQeA4Q4YVwAABsrFryN98JCS60qEdg7IXnr7ot/Zkl1IuaPzMyvqIhU5oIyJ9E+VHp8lodXvbF8MqPEbhy9D0z4wpEtbet83+oL03UOiWV4CKtBhPJGCvF9U+FqQqubaVS1w2a/b7rWyi8vYW3Xra6qMbbuDmncp3Vrf8RbPaORIXyy66d1PpbtZZUa0ZD2TC29N+L722IZcHxGbGd0fn0ss+3svhm48K4fRcY7BdrqdqK9IumCBheS6f1Lp17Wa+nXFG4mSDgEr2NC5bWp6CQZESCq3WeZjwt80NrAnjcLO8Goew4Xe63Yhoe9rRqBmVwNZiXCQN1uX059zKqhLSWn6Le2H0wRuN0ujorMwAHRCO5pPtNJOzly+Wa6fC0Pa6paF3ZZ6Z8RunlDSru8B7Qd90mi/SZndcsd9W23NKuWzvldKiS1sHY8rBXkPY8GQU+g6o+oGEGCs9e2p6dag6XN0t1Dsu0y6NOiGtbDiudTFKzttW7z9VdC+DRrfEdiiQ62Npvqu1EF7z+i32/TbmsBDNI7lZLDr9rQc5z6R9IymV/jMBum1tHudwTgLX0HYodCAzVqEnsNkd3UsumBjn1GsI35leTuOt9Xvhp1Cg08N3WelZPqP13VR9QnlxR7J/Waw6tfl9FpFLae6Za2jKAEDzd1op02UmDSIHoq1SUWobqgpsLnGAF52+uql5VLabXvbwAu+60/FQ1xOjkd10bTp1Ok0BlMNCzrpzZH42a4gEAAztPCYwHJ/QJYRtGYXueQ8AHIHt7qGRuqYcTsUJGUg0ExPKkHndLEBNpjcnso0cjY4PKNrn6TpcQ08SlETtk8opJhvA7IZ+0G+/wBSmAiYH3QYG0ogCRIGEk3GnfKa7wTRBD3+LO2IhZ2Scko2zt+iCMEbqgTGJhVtiITAMZ+iQOkwvMAwd0TWhAHZxhODWATqk9ihKnH6SjY0nbYIabgDBH1T6tvVZb07h1Mso1CQ13fur6QRIx2TNZODiOAktPIKIOSmuQGCBvxKgfjbGxSdcCIzyVbHT791BoY7y7pmobhZw4HGJRB3bZSaWPM4xCMP/RZdZmAUTXE/2Umtr2mJMeqLX6rGHI9ZiD9EstjHnujbU47rGxxA/dFq2gq1Y2B+c7lMY7IE5WEPR+IVLG8VSMAyr8QzusIf2RB5UW9tRH4pCxtcSMbFWHHIUG5tY7IhVPdYg4jBRGp9lYm9tY91fjH/AGWEVPurDlSDW9tZx5RisZ3ysDamIRh/qnxTcKx7mUwVnf6isVOppOcohUkynxWtorvx5j9Cm/iXgSHn2lc/WDz7Kw5WRnXRbd1T/wAR8+6YL2qPzmOy5oeUYf3yrxh8nSF7U5eUxt5V/wBS5YemNeDuVeEXk6P42qNyCiF688ArnBw5KY2C2VeEXlW4Xbv9IUF0f9AWIHmdkQcFeEXnW9t48fK0AeihunuyQCsesxAwE2kPEcGhXhB51soA1STsB2C10qDDkgn3Q0WhjQ0cJrXBGRrT6bWs+UAJzXFZQ8TumB6cWtLXY7oS4zIwUrxFYqeuysR2t0QRKF1YU2nyk+iRVqkNmYWd12WZ39E4zuNjKwY11R58x2C51zdPqkiYb2SK1Z1UyceiUDJjJW5y5Xu/gRPfdQZTqVu+psIHcrZb0GUz/MaSR9Qq2CS0i2tH13AkaW9yu1Ray3YGMEJVOozZpHsjBBIcQuXXt25kh1OoJzjsCjcXlwh2EoEYxlEHiYBWca08nHdWfTdJJJGDBRNcQIOfVGHTgFYKVqJ5VwS6Z9ws2HTeCV5vqzXm516THBXo5SqlFj/nEo+m5WewaKtmPHaCB3C5vU/hfpnUQ5wpBjz+angruii0UiwYbCG3otoAtkknus6Y+Z9T+CLqgXOsX+I0ZjY/dcin1HqvRKmmt4jWg5bU2+i+wU6rvFfqbDBskX1pbdQoubWtw9u2QEa3m+nh+n/GVtetFG88hODJ4910anShcUHVenVBWYRMCJC4/W/gm0LKla3e+2IO0SPsvP2w670J/i2bzXojJNM6hHstS/py65mvXdGokXnh1wabhg6sLtfEVs6laU34c0bEZXnuj/Hljejwes0Ayqca4jPqu6Lxl1ZVqVJ/iUIljgZWOrd104nM/trgAncbFC0R/VACWhzTuCjpgvIZHmOymZ9mF5qOaym2SCttW+pWFIY11zgDsqpUTQZIw6MlcvqDxWrsGkaxv6rGeTrPUei6dWfVoa62S7MFS5pCpUBGB6IbXy0GDsMhbaTBIKWZQUbdgbMALRTosJERjgIHsc520DutNBzKTYcZPohoLHAOLQMhaazDUpNaMTus5fTaS4Dfuh/EOccZj7I0tTyGtDQZjdMtaRrPjgbrEwue6OStzazbenBcG9ys046jdFFuN1Rujs0LzlfrTGEik01D6ZSm9ZuXHFuQPYrLpPj6flsAA4yVBvJMeicKNZrY0H7KFrxgsI+i+g8UpYGyZpwTzwoxhnzCI5VgmMAqF9BaM43TNOiJ37KhjzHdEZcZMk91LVsGC44HBRYIkY9UIaQM7cBWAMKUW3HKY10blBHYyjbHIk8KWrGco2OIzx6oZ/3hQxsNuylo9UZGe0otRPv2SxtvgowYiNlLTBgyrbBzx2QtEmDsmfKfZCXyOy7fULu7uOm2ra4Hg0hDWBoAI7lcSOZxuFNbnAAuJHAKsO+jQ4l5dAE8DZXifVLkhsxhQHO/1SNOJxMyra6UkTKMGCVLTg7sia87bpYcFYMZUjg7CtpJMYHqlBwnG6vVnulWmyZRTz+qUHZRBygaHHlGHeuAktPJRSN1WI7VlWHJYJMIgMSpG6+36JlKoGnOSkEAZP6KwRwEyCtGs7yjFaN1mDSRqgog09pWpyNafGJ2V6ykhp3hEGmZWpyx5HNcd0bXSPZKa07pjARlPivI0EI2u+wSgCZMIgD91eIvRweUQd9EkSjB9Mp8WfI4O4RA7CUsTuUQOVeK8j2wB3JRxiQkCSmyIVh01sRJKsEpU5wjadgrBpoI+qNrsb4SeUbCcdgrEeHAJrYHqUhsHY5VgkFS04nO30WywBL52Cy29F1V3ZvddSk0MbDeFm+jzDttsq2nMoQVYPZYbM1IgUkk8ItX3SjHOESSs1S8iQz7rLdVyX6QcBIknP3WpGOumh9Z7t3ISSRJSWkk+i129Euhztlpj7DTY55gZW+2tww6nZPCJrQ0AAQmA9lm1qc4a08Ip7/ZKDlYdystaNzGvyd+4Ql1SkPL52+qKY9kWoRnZQ0VG4bUEbOG4TRGqScrnOYTXDqTT6k7LoMaTBIz3VZFD2lEHIAx3ZMbTd2XP037WiY4bDhTQQJIWerd0aBh+CUbG5K1ajqiMd0xpBWS1vKVcnQZI4T9VVxinSn3K5ddyfbpz8dv0bJHCGQ52+EFSlf6TppME8yuXWfXoP01CWvOwXLzl+nafHZ7rqVHDWG/lG6j/Fc2KXkGwJXJqXFy3Oog+yUbmu/PivR5mcV0ru0BYDUeXk4IOxC8P1u1PSuoa7dxax3mAB29F6Jz6pILqhMLkfE1B1Wi2oHEx3W/j7zrGfk43kNXpHSOvdLNxc27BcNEOew6XH1leXd0HqPTneL0O+1sz/JqGCR2B2W7pdy6k80yTpdgiVvcI7xwFvuZXP4r5c+3CodaDnm36tQqWl1MSRAK9V0ltB1LUx2tx3K5d1Sp3FIMrsZUaeHiY9itXR7N9qNVAxR/0POfoVz6+nTmN3U3eDRL4wvN1KwrXDHUzscr11ZjatIh4lvIK8/bWQqXtZ1NoDW9tlcemu7rsUakMbPZa6FdrRk5XJp1QPKTDhghNpl7nQ1hKqxHW/EsjJJUFYn5Qs1O1qviRpWmnbMYf5tSP0Cy1JaIGT5zPoFppMJEu8jVgveqWHTrd1SpUYGt3JMr5v8AEnx9c3TnU7A+FS21clWNY+q3V9QoNLKdWmx/Ac4ArHQtfxtXVcXGpu4Y0wCvgta/r13aqlV7nE5LiSvR/CfxDcWF3TY+q91u8gFrjIB4IRebinefT7nRo0qLQ2nTAHsntcZ2H2XPs7sVrdj43GVqp1gSsNba/NbCz39E0UxU2bJPdaddGqRqYwHumeCyPKcei9seRmFFrQRpGd8BLdb0nTNMSVsLY5mOClFs+hSGYWNJ7gIj2RnpbAZafuFpoghy0nICTLjns6Yxxy0R3lPZ0WiRJP2WxpnCax3Cob3v4Yf8Dof6sqj0OlktK6jZ5GETZHzD2TtY1xXdEHGfRJPRy1xBacL0tOCRGVcODnEb9k6nln9NIEHACV+Dpj/jMB7FelrXYpA+PRLRsCRgrz/UrylWJFOmxo7jdXO1m3GY0WsMawfUJrWsj5hPJWInjZGCd5wt+I8mvwmH84hW2hTn5sLM1wB7hMdVEeUQVeK8mgUKfBP6InWrCJkn7LIHECZRtqkcp8T5NAtgDgPRfhff6pdOuZiZHqntrx80qxattmTkH6IhZPHKY1zo1N27p9KuH4dg90eK1j/CPAhX+FJjI+66QcD7d0LqLXfLgpxbWAWrpiR6ZTBZ1PQprqL2nCge5hT4jQfgqgjyyqdQewwQAVoFwS3H3TrKhWvK4pW7NdR23/lXjJ9jyt+mKnQfUIAMk4gBd61+FbupT8Wu5lClEk1DB+y71na2PQGtfXcLi9IktEQw+i5PWut1Ll5L3TGzBsAsbbf7Z6a9c/ah0fptv/6m91kbim3H3TmjoNIfJWqEd8LzL70OfNQ5/RZ6lyCZL5WrzjO69h+N6G2Q20J9yr/xPo42sfrK8Qbo/lwgNw8/m+iC92zqHSCc20LVTuuhPHmplhXzwVjPzFEK7p+b6K04+itHQqg8r4PqnMs+jVPlrMHuV85ZdPHKfTvDyrb+1kfRR0npzvlrM+6L/AbV3yvB9ivAMvAcaiPqntu6wzTrPHpKtv7GT9Pbn4do8EoHfDreHkLyDOrXlM/57x9StNP4ivmxFc/VO9D+39PQVOg6ASasepCQelsH/wCQxcw/EV44Q+pqad0l/VKlQZgHuFqW/lm47A6aAcV2Hsmf4c/ipTK4Yvn7ko2X5Bk5Hun7Zdf/AA+oMamE+6sdNrcEfdc5vUoGQfeVB1L/AE6591F0x06v2CNthXA+ULlDqdQH5zPumDq9YbPKtqdD8DVkJtK2DHfzATHZc/8Axe4j5ghHWK3MFHtenoKbmgBoEJwHbZecHV6sbMlabfrFbeGkLONSu3B7IoM4XLHWan/tsVHrVUyNDAUF1QDyFcEg4grjnq9U4gNQ/wCJ13fmj2UpGyta1dRIzKV4NU4DVkdfVnEgVCPdLZc1HOJLzPotSs3l0RTqMyWpzbs08O2XJ8aqSfOYSa7nATMq3Wby9A2/pxmB9UQ6hSH+y8r4pnfKIVCeU4Nr1rb6k7DXLaypQ0BzqoE8LxlCtpeJ2W1rg5ZsalemNzZt3qylu6nZMkiXLztQsYJIxykurUC0gDKJyb3j0x69as2pkpZ+I2TFOiPQleSc/PpwrDwZzCf44z/JXpqvxNWaYbSYPVIHX7uqY1Bg9Fw8PZHI5V0gGuBnKLxzFOuq7L+t3bBp8SZ5K59a8q1n6nuM8lZqzgXbpDnHk4ROY1eq6dlfVaLzDyD3C2f41dMPlrFcBjtJkH3TnuDvMDkrn1xN+nXnuyeq9Fb/ABFcsEPdrB7om9QF3WDqj9DhtK8wXFuPsibWI5XO/HPw6T5b+XvKF9SezRVLHceb+6ebOhVGqk7Q/twV4ahckYJMHhdbpnUn2zw1x10nbzwuHXxZ9PRz8mutcWz6PzDHB4WC9peLa1GbyML0FKoK9uWjzscJHcLk1WgOI7LlLZXWyWPnwJpXWl27XZXcLgWgjMjCxfENuaV3rAw7K7XQbAXVFtSqdNFuSTyvX8nUvM6eP4+bz3eTOmWLH/z7ry0Wic8rD1W/F1X0W40Um4EcqviDq4rP/B2eKLcEjlcpkNZC4zm33XfrqSeMdqz6iHMNJ5DngYk7q+k1BS8U1GkanHHK8d1a6/D1A6m+HjcBdzoPVRf0NFRw8doz/wAw7rpZjlr0grUAcU5KMXJA8rQOy57XZTmO7rFLS6vVdu6F5X4n6kywLqtzXOflZOSVt+Iuu0uk2T6hLDVA8re5Xxnq/Va/U7x1a4dJJwOAnHTm3n26HVurVuoVS57iGDZoOFzi6SY4SA7y5VTgmU/TNtp7DOe/K2WroIIMEGVz6Zhard2RnCWX6A+Ar5tforBVbrIjPK9dbutnOE0+V8x/h1cFnTdJPODwveWd0GvDnRAXm69OnL8pW93XonDiW9jsuna9VGqKktPfhcqrRNGrDhjtIKXJky3HC+l9vJr1TLwPIIcHApoeCZJ3XkqbnNy1xC10r6szd0jgFHj+lr1bGgZ+5R6hMTnsvPUOpgfOCJ5C3Ur5j8h4Lh3RlGunUcGwQUipfCmMnPoubeXxy1uSeVznVScbk8pkWu6erHjM+qtnVzIkGeMrzslxM7eiHU4HIPuteEG17Kj1Zjt3Z9VtoXzH1PM4AxuNl4RlV45wtFK6ex25B7ovK8nt+otFW0cJGnvuvE1QG1HAHY4IXQZ1F5oObqiR9CuWSC4yfcrfEsZ6/wALLpjMhQOwqMD5XSexwoB9StemfoxpHKsO1bbJeQrB+4WgZqO04TAZSRJP12RlxbjZSOBGJOU3WIgFY9Xqm034wpN1CuWscwjCJtUcGFkc7IP6Ig4O2+yDreys5pwZC0suR+f9FyQSPT0TqdQzDiAO6qZXVbWY7GpJuHajDSCPRc81S15AII7rrdV69f8AVaduy9q03soM0Uwym2nA9YCver7jJRaXuDR9l6Gz6kbK28G0aGOcIc8bn6rgUnBre07lMqViGlrcN5KbJftnyz6arzqBzpMnklcivc7kndIrVolYn1s5+irc+lPftqfVMSUp1UrN4h5KrxJWK3h4q59EYfxPussjuq1LGtRtDxtKIPCxB3qia71ygtofsmMqd1zw7PqmtqGJTqb21AmNqkHBysAqRhMa/wD8qlWOi2u78wkIvEadsHssDaiMO5CdGN7XDui1kc54WJryBCY2oVrR4tQqnafdMbUEbrI10mEQP6J1eLUKhTKVYNdJ2WA1CFYqE84VrOOg6rqcXDZMY71WBtQwe3KexwIlFpxr1HOfdU145WcOP+pVqxlUqrWH5Wu3qGB2XLa9am1yGAN3VVI6TXbz9EWoHPK5bbh4OThONV3GxQW7VjdXIhYvFduVZrEN7FSatQIjVCGk4yTPKztqamyd1VJxzBUnRpVodDhIKRdvLTB2VUaukyclLvazSJ3JVBfZQfhMa8rGHGJ4Rtfwujk2B5laaVzpWK2DalUBxwtv4RsS1xRaZLfoFW5Lz/RKLj3TDYu3DkJtarRuDCtgvNBqznhWXjjCDwaxMxIHZR9OqMBhVsZymNqw4ZwlV6jhUhpwqFGsfyELQ+3LWsc8Z5VbDJay0XuNbJK1VXADJ33VaWAyBBKTXMrFu1qTIjqkH0CbSqTusTHHVAyicY2weyrNM6dIQ9sSlPaWOSKVYDyh0+q06g8Q5crLK6yyra4R6rbZvGpoO05XMJLTvjhabd/mGYhZ6mxrnrK950qqGU2sJjsp1GmGVtQOHZWXpobWtWPYZIEH0XRdFWgWVYD25BPIXhvqvfzfTzPWbZlemzVjSc+ywdV6tptW2dn5WgQSOVPiO/Yx/hUnSRglefpyHFz/AJiu/POz249dZT6LQ0ScuO5SrysKVNxHAUe/HouP1asXN0gwFuTWHJu7hz6riczyUXTLp9tdsqsMaTKQWy70TBSAcNJkd1u/TH5fRenXwumA0/MSJhB1bqosqBJw/gFeTodWb0uk1zakOGx5BXn/AIg6/Vv6r3Tl2y4115jL8R9VqdQuTqdLWlcQHMDKjgTMnzFMpsjfdMIhtKHEgg+6sjEBC3LtP6oVaGnGcFOouiMJGQPVOojYd04K+jfCnUH2VlThocHbhe06R1B99cNaG6WDJXlvh6yD+igloLgJBXsfhGwBpa3SCTgrh3Y6cTJr8z+IScrQ2qPALCBO4PKxay7jhW1xaAYIB7r6Nnp4taQ7EKatifoEsPBA9f0Rkah7KiNLpDQCrbI2wUAlsTglMAJyN+y0F6z3+iMO5SDk+ybTI3fgKRjJOQEWeR9FZMs0jbghMtmlrDJl6mSIE4x3Uc6T6JlUA5Ag8pHPvymUHUiTjjsreCx0bqqGgHU4/RSo8OfI+idVW0g/VGDHoUsEq5KQZkwnAACHCCkNciBkxyrUJhAfOyF7iXkyhe4IScyMykU1rvsmuaGNBBMnhLDmeGQT5lNUgZmNgrUaHECJ9kylUDN2gnus4JO2ZRkQRwpZrUKxJJj2CZQHiVA12BufZYwYn14TmOLWkN3PKS6t8+0Fu1tNv84QCQsVOJHICANaxsvy47KUXnUAOTlE+lXSp0ZbqeYMYCz3dQNp6Wu9SVdzW0Uw0Yc5cm7qF7iAZAVqpdapqO+EnXyhOcThL1ZxtsqqGlxmRgohkeqUHZRBy51uLJgqTlUYKGRss1owFWHFLDo9lJjZBODvuiDjOUgHKMOj17FWhoa4bzlGHwVmDuO6Y0gg9/VRaW1O+6YHnhYw5GHkK1NrXd0wPM+iyB4KMOynU1sqkItZPKyhx4RNeE6GkPjB+6IObwkMdOCiOE6sPa4/RMbULfVZNRwiDjOUpuFbtuoHnCyBxxlHrIMzlQsaQ9PY8ad8rE0zuUQfpMTITqxsLj3Tm19LchYmPB5yiDiOdlJsNxIwMhAaxd/VI8Qzlu+8IgW4O3urRY2B404UpOgEzKy6j7oadSAUJs8YgHP1SalaQlteHiDgpVZxafRMZpwqIm1CsmoFEx3mhaZx0rR/89pK7DHjZecpVQx4J4O66VO5DgIdKzTy6oqDui1AiCueytIhNbUwsNWtbSAj1BZA/wBcdkQeoNQdCp4D2lpzKQHSEQOcKTn3LCx8Tss73HYrqXLRUYT+YbLlvwYdumCwouI2MFLkiXSicOQlucDgjK1Kxgg/lpg8rRRrnYnCxFp45RNBxjKrIebY6jHse2CYPCISwg7juueHERI9itNGvpGl2Wlc7zY6eUr0PReom3rAOd/LO63fEHWGCkGWz5JG/IXly/SNQy3hShTN0/zYYNyuHfxzfJ6Pj7smMlNj7m4NV5JE4T6zC0REdloOijUDBhvC0Vmtqsjnus7+mscOvUhhBXHu3aiYn6rq3zCHFu5XPdTOoGJjMLSxgLDGAiYwGmXE+eYAC31Wiq0ECOMLNWP4Og59QQ3j1KL1hnLz3W6b21Gl7wQeOy5JlzsfRa7ys6vUc9+5P6LM0HWsNUJAn15RxAwjDROrhESAAIwjUQ/GFdFuZUeZJkIqO87eiUdpBC2WlEVCyO4Sbdut8DM7BdXp9Ei5psggg5B4Sy+l9GDafS6VMHzEAQvofQ7YULOm0jMSvAfCts64uqYIlrYJX06mBTpie2F5r9u3P0/FsEFG6q8U/D1eQGYK0GmO2El1PO2y+nK8JQOJPKcXxET6qi0QYaJVaZGMBKNbUmNQ9k5jw3blZRMidgnahGlox3QhDDjJ9kcEs8ozyEsSSO6Yx5AglOg+jTIbnY8I3N0iM+4SRW0QNyd0ZOqC2RG6kICAYdKUZkY3wmPJDRJlIc+MbpgpuwMhDziIQB4ULh+XdagpzTxCMkx+yztd9kwOP0UKcHEDbCskR2KW0kqnSQpVZcPf0UY4jM7pUmVbST7JZrS0ggDlUD2SQcowT2kqTRTyCTgItUndJDiAjZJ4KSbJBlPpjTkbhJpsJMu+yY5waEbpxppVBUqNZVIawmC7sFpZbh9eobZs06YyZkR3XOZlvotNNxZScWmCcIpBc1CXOdOBgLm1XZnZablxDGt77rBXcDhMACYyeVTQSQB8xwELiCYUBIM9lUw57H0yW1Gljh3EKpHdA6q6p8zifU5VAys1o2VThyPqh1BE3PKylA/ZTUOUMwVUz7owj1I9SROEYKDpwIj1V6p90oFEHDlCw7UPpyrDkoFECAknNcU1r1lDhui1GVKtbXJrH/dY2P5OyYHqDdRcC1xMCFQfJnjhZQ4EbpgkCeEr6atQU1d1nD+QiDpyrVWgOEbqw4QkaiMcd1QduOyZRWjVmOFYcs8mFYdla1NIfGE1tY91ja7kqw6ThWpvFUHlWXAkErD4h2PCNtbCk3F5a3U3ZU2u04cIWYVQRuhcQdlMthEiWmeyW+o4iHDIWdrnNEtO6J9UuZBGUjB6jCIO29Vna4R69lbXCN8plFmNQdPKttUg4OVnDkTg4DV+XullvpXjhvkBbKV40+i4zHgHuFoo1GUageBrby0osGu22sHRBlOD/XdMsb7ol0xrKtE29X/UDiU666VUY3xbV4r0TtG65b+3Xx/TO2oidWDW6icLIXlrtLgWuHBQVqktA7rU9sX0eKprPy6ArubPWzVTfLxwVgc8tMBNp3BEdxwt3lidMznOY4teIKuA4ArpAUrkfzG+buEh9pofAPss416rKweaJ909jQBMIalB7TJafdEx3Cza1It1MHPKDSWnITg79Fmuq4a2B8x2Rqs1VWo57vDpZjddNlRlG2Yxphx3lc3p1wKAqawHSJMrHbXRuLtwOBOFy7mu/Hp1Op6jR1NmR2WWzv7moG0y0AzE8wuqwteAw5PIQ/hWB0tbpK57np1zS3UhVqQdxuhf04OOPqulZUwXGclbvCaAseTUjzg6aGOAGxXYZY2lW3/DXVOnUY7YOE5QX1NzqZNL5uEtjaz7cPa6SIkHuufVdZHneu/AeoPrdGqeYCTQqGf/AIu/uvCXNtWtazqdxTfTqsJa5rxBBX2alVq0ntqNOpnM7hV1rpNj1+2fTuW+FdBs06wGR6HuFTv8U3jXxZgJETuo5hgkbgYXS6p0y46Zcvt7lkPbsRs4cELmvcWmBsum65WYRqJBBH2TKYwgdE45TqfAKRYfQblev+DbA3/UQHS4NGSV5O3ZLoX1r+GHTT+GqXDm/MYCz16ike4+HOm0rNpc1uXcruuY522yVb0xTAHpK0NcZ3+i4Or8fOpDflCaY52K06SOUJkDK+jrxMxpiNvolPZiVsgqaQfm5WtTG5g0gtzjKCSJ7LcaIjCA0QR+6mayNdyjBIKY62IGMjuhNBwGEo2mWPEP3HKaDoMzj9Fm8KoOExrHznbkqS3uLiSEvSTvstDaY7fQo2sxkJlTLokwrLYGy1hoj+qzVxHP0TKyASfbsiJAiCgaRxkotRB2WwY0nEYVlxAyhDiG8GVW/MlCWHjYDfEqAnYY4V06TifRaGURzkq1YUAeEynTdvynsawbD2ViZgI0+KBrQExsASEskAwdleoDY47KlWGzA7JRcXPk7DYIX1SB5Sl6id0wVrDoaITazj4TGCASsodqqNA2wE6rmrPDQkM9dx1k8DCw1Hanp9VxIJnlYy478KkSyQTKouk+iqcRwoJiRlOFYdjCLVhBsoM/1QTA7CIOSieyIHss2GU4OIaYAMhK990YIDfNyluwVjCIR/uVZkOhLmIRB5GyDgwe+UQd6JQKIOH1QYaDMIgTCUDB3RBxiChYZq4V6v8AdLnlQE8pRwcjDkkEogUo4OM4TRVOnSThZgSi1KTQ1yYHAcrKHesog4Dn6KTRrlWHfRI1I2vEgkT3Vopwd5lZclOcCZAhU1xndMB2rPsia7kGCFn1Cc59VQdvG6dTSTie6ges2oxumNEsLp2SjhUI/ujbVHssocMg/RBrIP8AdLP06TXkwJTrphZRBIiVy2VIODlNfcuqCHOJjaVIerCtrlmDirFQjKWW1rpG+y0UKxDYOWrnsfPutNI62kdkprFNr/Mw6TyEmq54hrsQlguY5PZVbUGl4xtPKoKW1/C6PT+q3Vm8GlUfp5aTg/Rc2rRLPMMt4KV4h1b5TkrPuPa0utWd+Ws6hRDHf62rPf0aTKoNtV10jkFeVD5910bCqQ0iZAWfDPcPnvqu0bUaQ4uGdkipRLctMpFd1Tw2vk6VdtcZAJn3WoxYJlZ1N0laRcF7myk3VLAdwUugDrBT6ojtMcHNEwQkXFqHealg9lbCB7ow/Tklca6yuXXeaQOvBXP01Kjy84aNlqvnG6udAMAblDVaGANb8rRujW+ZhLZcHegWOydpvc4C6AYBRe4blZPA0sNQE6pwsV0n06VGo/8AGS0z3HC7rHB50j5gMheasHlsvduF2OjONaq5x5OFx6jrzXatWAGeVprNJaQ2NUK2UmtZqJghZnipUfInT3XDq47cwdG3YKR8R4DjuEVOlRpsLHO+oCYy2JAJKYaNItmdtwSuXk6YWyjRqUiwO+pCXcN/DupvEFoMYWulSpO+U/Yoq9rqpbyOAseXv23jzfxL0lnVrBwA03DJNN3PsvkNemadV7XDS5pIIO/ZferiNLGuaWuEZ4Xzj+I3SRRumXtFv8urh0DAcu/x9OfXOx4aCXd09gz+6BmcpzQuzjW2xpl9RjRuSAF+g/g+xFn0i3bEENBPuvjPwRYfjes2zIloOo+y++0milQa0CDEBc+61y0UHanuPGwUr12UmlxMQkl4pU/3XGvbk1qmkHy8rGNvzeTjZACA7IMdkxwg5QFonBXteOxTiePoqJAH6qFvbjZC5xaJIkcrSwRcIyQFGuDvlIPcSk0qfi+arnsOAEzQz/SFAcyB3VSOyDw25iR7Kix42dPeQmCnSIA2PdVgpJLwPM2fUKB49ko+ZwiEAJLTneUyTsdioEVqh2bj1WUknc7rRWZHsUhzVvlmoJBkKw7JJ3QAkYP2Vjf+q1qGHGPZMDgkg8K50tKg3U3y0QmCfryuex5a7dbKdSWzzysWNQ6QETCJEmB3SQ7uE+rTDKTXzvsFENUhroGfUJZcfZURieCgmTG61GdWSFASZKkEfMIQkmTCZWWi1JNYT9VquDpY4xkrJZGamey13LWfhXO8SHz8kbj3Vb7M+nKrOGn15WecI67tkucYWgqY3+yI4YCPulucTB44TDmnnhTX4Mps8RuoRq7JbgWu0njdACdP9FbZP9lCC2RBwj1QyTgIQSsk0u5OVZyEsORtPJWbGoGVckjCjxyqjmVimCafRXIAHdC0gq5wgwwOVgwlAn6IpCK1DAVepLBRAq0G6pHsqlAHEKapjMBSOGWyVYnvISy6NjICsGeU6MNDkQcf7JQIRucSlDDuFerO6TqB9lervkKDQ13ByjOFl1RMYTA6VIyd1CcIQfsFRdM8DhWgWrCgeYIB34QlxiNwhJnK1qM1KBwByfdKlQujbZIpmrsrD5SS6Sq1JZaNaJrpPqswci1JWNTXQYT6NQtdIOeVgD+yax8EKEddjg8dillpa6Qs9OpgEHdamODh+ytX2bSrkeV23Kla3D266W/IWd4LSTwrt7kswcD1TGaXBaYOCF0OnuwVZYys3Ig9wroUTS2MhO6z4utZ1wWaHQfQq6lqzVrp4PZc14IOppgp1O4qxDisZ79Na1VazjT0AZClu6OcrF+MbSqgu82crv8A4Old2nj2ThrAlzAm3PsSbchDH4ylXVcxpByUh9Q0pa/DhwVz69YknOSs36anPs6i4OuYHK13DQynHZcmhVFOs13Yrf4xrF5x9Fzx0W6BbCRuoYNAN5O0pdySKYZOd4RR4dGk5+5OAs2NqFvVb5NJn07L0XQaPh08jK4B6uaN3qawO04gr0NjfUqti+4c3Q8bjhc+/p05+3Qu7ptNukmByuZV6yymC1vmheevr99eo4z5ZwsZeXGB9l5uptemenqbbrep+mp8voV1aT6dem5zHSCNuy8XbW1d7g4MIb3OAvS9Ob+Hp+Y5O659ZG+a6lnSFBhc8+qx1+rkVyyk+GjBXP6t1J+g06R33K4lJzg6TKued903rHube7bdU20zh4OD3XM+J6H47pVzbeH5w3UPcLJ0yqXuEYIXe1/iaTnEDxGCD6hU/tuida+FFpa4tO4KbQBLwFs+Ibf8P1e4Zp0gvJA9JQdOomrVa0bk4Xq304dTK+o/wp6aQKl28YPlC+lOcBk8BcH4VtB0/pFCnph2kE+629QuvDZpG65X3WuS+oXZcdLTnZZBj3KQxxJ1OMkrTQpmq4AJw2vz0+DmZSnEJOogKi4/Zel5Tc7fYpVQnSVNeJAyEJhzU6MNY4aAPRWHDOcpLHeUHf3RAnv9FpUwunZUSUOoTumAtAkmVDNCSELiDiJ4RPLHfKI9BsgeAW4GQkYoNjLTHoiY5zfmB0zvxKXqz2TKNY0y5p8zHYcEoVQAjGVmMbJr3aHaWmRx7JLnEmUz0zfYXtAzPsh9kTmk5JwlQJ3Wt0GziQo0gkh2BwUA2AHKhxzJUcHUbEEZB2KOi/QZnKSCT8xkDYJ1Buog8ptDWx4fkbqySfYcIGnTgAYRSsUqO8HZDn3VkzxhADnkBalGCJMZMqTHsqLS0+/JVagIn2SmqyPnMbIrs4hKs3fzCpdO8+mfdX5H4Yq5yBGQlOyAmVhL87KUqfiODdYYDy7YLerCZiOyOcIXgNJbMkHcbK8FuBDuSkJCLIahkco9QIGMISAwCq1FWYOBieDuqLeSrCqUYMoCMqDCzYdPHmEJbxByo12MInAOHqsWNADvuja0uMDPol5CIOIyDB5hZag3HEER6oQeFUzlUY4QZ7MDsfui1dkkORauUYTpQ4hAD2UM44UsMnnZGHZSJ+qMOUsPDlJj1Sg7CKf1SMMDlCQglUHeuVaDJKsPiPVLJUBylNDH4P6otX2WfUEzU3hQw5jHPHlEoXAtMFC1xblpieyhMmZn3Uqjt0BcrLkskk7pgXq5CmrE/dARBVOgAHutxkzWYyiDsJTXSicSIlSw0PJxCIO/3WcOz2TGOGrO3KWWyi7gnHda2OLSIMyuYXgHG3Ce2sJBJhKrqMeH4KCpTLTqGW9llZU2IWmnWDsO2V9DdMoXRY4NOQujTeCJBwuVVpSdTEFvcPpHORyCnN+mb6ducpVesGDeFVCqHiQl3VE1Wy3fsifaY3OL3+i39O6jXsaofQcfVp2K5jmuZ82Dwjpu8uo7DZauWMS3Xb611oXekuosY7nTuVzW1hU2/VcurVNSoTOyZRqw/IXKz9O21vqOGIXW6QwaCX7zIXCLwTPK7di4ttiYwBkrFa1Vw/xOqADYDIWfq10TctbTyGiMLPRuWfiqr3HPCCyIur/S7DXmJQ39LsKZvLgt1BruSVurOq0Gut9WOY5W+6+H6VowVKNV5qbx3UtrENcX1jqd2Xn+XufTv8fO+2G0satc6j5WckrsWljRox5dbu5TA0xAxHCMOLRA35K8t6temcmvdoZGFzrzqIYNDCJTntFQaXuMJTrG35yiY1+HPFwHmTytNKH7DJQ1LFmTSMRwEqm51GoCcLpLrnZXfsaQotk/MRhdPpjnay7g4IXIs7kPbLjnsupQuGiGgQSudajwH8QKAZ1wkCJaCnfAnTfxnVqJLfIw6j2W/wCP6PjVres2JDYI5hek/h7082tgbh481Tb2Xfm/2ufyT29pqFNgAw1owuNd1vEr77Fbr2oW0tI+YrDaWrq9TUQQ0IiPtaBqERgd10pbRGhg8xwfdWwtpt0MHuQub1jqdDpFAuqOD65B0s5UpH5xc70wEGsdkw7++yXB4Xpx54rUPWULiJ3+iY84Ej6pZaeM9lYi2uIdE7qeIWk8+it9M7gZGcocHP3TuA1tbkjCvxNRlIMRsqa4bAq2rI0l0CQhDzMykyTznhWHEbZTL6GHufLYI+yVqKoGTlWQZWtZEHS2YkyjYMSUrPsr1EbJA3gEEn6BZeSYymPcSM+VIyTjPdbkBocB7q9JO6FmDLgnNzuPor6H2pjATABhOpt0meeytgxEIkWlJKuTGUMzwoSOUaR50zEhATjuiD4aRGEDi2MCFSpCcRwqJKEnGVZcStwNFm7+Ye8IbiDWQ2biKh9lHums6U/kUmsJdKU6YT6rYSSMHlMBcn3RtiEPElWBwNytAR2AIx3RMA54QicCZhMpiZ/ZVAT2/VQgY5CKRufoqIAKjqo7ISi+ioHPqjDomNLpjKIOKFtV9MODY826oHAH3CxY1KJ45Qh3dHB05SzIPqsYYkyEZYQBPOyVKsOIyDBCG0cYVh0EFCTJk5lCSASgw4OVgoWgtaHcHZQElZVizjZRrsqT90BUjg7ZHIj1SGn/AMog4pX5MLj9FY39FTXDTBGRsVU/ZQMBU5Sy5EClDBCjSUE91YGJlIMDiiDphKlQOUjTO5+iF+BMyVQdOJwqd+ihYonHqh/XuFDCGI2K1KMbum0BXquyBpEwTCTduArFo+UYWfURkSChLiTlOowHsYTA4Aevos4d6omuIGEsnh3dG10iCdlnDvsra4grTNa6daDEyPVaqdQHYrnOMZ4KKnULcjblLNdqhW3a79VdWkHjUzdYKdQOErXQrQYOQpalCu6k/O3K6tGs2oAWH3XOq0g8am7pVu91Kp+6vtn6dS7pioyeQufcOIZpbstFWuS3y/VIeCWbKW5WIfPKsO8yhBDvRXB1zws1pppHafqu7Xu2N6a1lP53CCuA39eUyi10ycrFmt83Pa6jYpnSM8pvQ3f/AHGmXbSrqNil7rT0WyNSs15+UHKx1cjcm17K4e14AbmAsz3MpjzHJ2SnXNOmNOrIWOpVfXqDSPQd14LL1de/nOZjbUrU2iSYPCx1r3fRsu70r4R6n1INf4Hh0z+epjHoF6ux+AramB+KuS5w3FMABU4Xm+XfinOcQHCeROUupXecGQF9ir/BfRBTmtSe71JyvPdQ/h7ZPBf0a/fTf/7NbzMPsdwrxO68DbV6jXhpyDytlakXskD3RdQ6Xc9Ju/w93TLHccgjuCtNEBzY2RUyWTyypBXetWgODjklcKpS0V8bHIXYs3aQHHP7IvuKfbN8QWJvOoWVNo3OfZe2sKLaNBlJg8rAFzrSjTe9td/zAYldihlm8A7la5+mertKNE160n5RutDnCm0Mpj0Qvqfkprl9dvn2Fo7wBruHAgchp7rWKTS/iHr1HolsYIqXT8NYOPUr5x1C/rXtd1evUL3P/QdgsPVGdRfcGtdg1Hl0kpHjy9jXy3POFrDb+I8wCSfVVq0+6pxjKoEDfMr0a8iySgccyFZcCMH6IHHaFfYGKh2OQOVTGguON9oQcfum24HiBrjAdge61Ii3UDmP1S3NLeFoqB9N5a7ccIS4EbfRGHWaFZaQcJ5YxyB1MxIPlGyEWCR/VENvVWWlRpLduVYdQuOnP3V5Iwd9kHvurE7HZUuC8yqcC12cwo2ADwSiE7HLVGtBO8HgFdee5XO8VQBmBytTGgATvCXSplrpdsNk3UB6qtEmDDRBnb90LnAEd0GokdlAQMoOrJk425VPEczhQntshMk+6UgJOOeyjhpOfshBIPqCm3Nbxnh2mIAGEotWIJ0jf1S5zjYqHASD7d2msAiB01nEgO9Cs9J0VW++U5zj4rv1Squo7UZiOwSSBPr2WgAEevCB7edgqUWMzgA7P2UBEqPkvwhzK6M32PE9x2Wik0mm5wGBys0FbaF3os3W4ZkmdSgzxkymGi8Ui/8AKlB0mImE191Vfbtokjw2nGP6qWkzGxVwDvsqjHorBhpAyCpQBjTA37qg4g52RvaBBB3SiYOUGU0HEyo6dxghA0+n90fC52Ohc/8AlRW4EZVAxlZrUqyUJyo45UznH2WaUY6DBOEwOmUkgbomdistGCSrc3y6gUMmVRcVahAwrlASCVNWI5ndWqmgp1Hwy13iOg8LJPZWHTuoU10Fx07Kg7CDUR/RWHcpBhPb7KB30QSpInJTBhk/qpOEskCSFfCUYHADKLVhIlWCeVIwn+yEmD6KSP8AZUcq0VbnyI2T69q2lQbULwS7aDKxOmFfjAUtGnzHmUjEaQXROEQJDvRJBRB3/haR4M+yoOQNPdQmDP6plZsaGOBwVYIDs7LOw/7prXBwg78FLJzKkGRsttOpqEhc4GGlpGe6bQfDo4W3N2Lap+Up1SnqMgwsVN0gELS15e0xgBZvpqe1k6d90bXBzdoWI1g50StFJ20Lnf23kJqyHKskplw3P7qU2+WStM2LyGHMLRaVtAIc2fVIwaZ7rRYUTVrNb90GR06FF1emHaYaeE8F1u3RTwD2WyoBbW3DYC9B8G/B9z1iq286iDQsG+YA4NT/AGXm+S76eniZ7cv4d+Hb3rtf+Qwil+aq7Yey+o9D+F+m9GY06BcXXL35grQ7qNpZeHY9OpsaxvlJZhbhJbOy5Wu3+zi8kdm9hshLg0eqWMpVV+YCymfqVb+XpJyVyA4tPlOfRbbmzr3dcBrgxg3K7XSui29Ih75e4ZJco2vN9Y6eer9LfRuKcV2DVSeRkFfO6dJ1J7muEPaYI9V9ovXCpcFwENGAB2Xzb4ushbdWNVghlYasd+Vmxqe5jzt00amuPsttifLpOyz1mgtHaVqtKeluoLOejqdZvnWtACmfMYhaOjdTvqlFjHmVlu+nVr69p+QikNzwvVdM6Yy3ptJEuW59Yz19tlu4CgDEVDuT3WepairJeNRPouiy3B3ReGW4ASHBqdEpVAQ5olc65+GLatLXUJnaf6L14pv16j8vZMDQYEexRh1+S6twadRjCx5Dmgkgbe6ayo12WuDvRc+o4uABJMdykw5uWmCty2M2SuuSDxHsoGh2A6Pdcxt5UZ841t5WildUqpgO0O5lbnbN5a3NLRBQZjy7jlCHviA4EKCsPzCPZbnWud5sb/GpXNFrK3krtEB42eOxWR7C0wQVQcx+xzzKPUQM+YDYFb8pWbMAjAICtxY8SGlp+4UacZOOAFKoW4yl6QZ7JziD8s6TwUsx2QiyM+yotMotMQo2DvhWHS8jKIQcHfhEWj1CBwIM7hFh0TXObgGQmte12D9is5dmRspInGFS4LJWkuAkx9EJcO09kDXkCDt35VkktwZHC1OtYsEXY4lDPI37oYMSVJ/2WgJxMgnJQyeFQ2ypvjdKxYChPCmwlUQUpbAXVABunGS8rPBnHCcwmRiQlHNJ2RkTxKukwE5MJr2/Ujss2rPTBWZq4hL0w7KfVkGDulPOe66SsWLe0b/ZVpcGgxAOQo8+UHvwhDi4wTIC3BRagNvqpOB/2FAZHqpgbTCmUBMKwJInEqgcQidHZRAWkYQkR/RMOYQuH0QYUmN+SZyhcAMcqNmICzY1Bbyh0gHKdScWiA0OlC4SZP1XOtSlxKtr9OIBHZG9wLQA2CN/VLIyhoLjJJiFUxlWqIKzSKVU8IROVC7CK0uVcmUKgmUIWqVAZQlQb5TIqZKsO+/ZLkK5yoGajgHCmpBJ3Vg+bOyRgpUmMyqOVRB+qULUpqhDnhCSQUo0uPdWHT/VJkomuAOdlAc8FC4Src5pdgGOysZGPlHfdSJIKsH7cowAd0LmQmVlYJ34VzwlF0BWCSlGkDj9FbCZSg4pjXf+VuM09jgcHfhMaCAAUhomE5rsZTHOxvtnF8N5XQq/y6BjdYemFuoknzdit9yQW6e6x1fbfMkcljvNOxXRoZDTwVgrMLX+hW2xB05WrGL9m3eC0QjpMLxDBJQ3Muewcyu5YUGspgnBKOri+OWuRSpyHNdg9iuz0Wy1PD4k8BNNhSqVNexXvfgHodKpWFxWHkZs3uVx679O849tHwt8HC5qt6h1cfyWQ6nSdsfUhdbr/XCXmysvIxuDpwur8S9Tp2HTn1HuDGAaWj14XgbIOrVTVJlzjJK89u16uZ4zXX6cwtuWEmSTJK9Z43kAXmOnt/nt7rvhvdZqaNZdsVIHKUHBuAqpVQ+tonzbwhN1nT1OnhdSo4ULYx8x/ZJs6YDR23JSb64D3EA4GAtfhRlMOkTleW+NKAqWLKoyabtx2XTv7mHaGHPJC53UGmr0q4YTPlmVlrm5Xh6xOgYWuzbIACzVG+QArpdMZrLQBysl6fp1sRQaXQcbLa2jGwPspbtIY0DEDIWtkDIwUsktaNuUwEbHJ2KZpnMSqLfMpAMzpdgcFVok53TtMbn2lV4ZnfB4Un440kfNsgcwxIXVubMsk5cOCFgqUzmDjsrUxPYdggNPvhatBmMyo+lOEpma59P/AC3GORwttpUNUHU0Ajf1SxSGwCdRbpPyyDunTgy2DPKku1Naz5nGEyGkSJ9imWjAaznHamwu+vCdsYxmddOpvLXsMDmJCtl3Tds7PZG4EkngpbqVOoPOwFandZ8WhtUHlCXAnfdZTbhpPhue30BkKg2uNnhwHcQt+Y8GwOZzPqqc5sYWXxqjR56ZIHIymMu6UwRB9RCfKM3k5roxuERAd/3lC2tTeI7IxByDha1WFOYRslxErU6I9UDqZP1QCZ7oHufT8zPM3kJj2lqDIE8KwmU67KgjZ3ZXEHH1WV9HV5qeD2VUrhzXaag2TKLGsnMyoDnG3KFrg7IVE8rcrFmDj1lQYKEO5BVykLB/8JtMgHeEkOyiBghNqb6T2wTsVHVBMjBWQOg+gVayRujFpx0EkvJHY9ykEgyrc4lukIXNc3JEBdIzQkwQEfh6XZcO4SyfoFU/7LQs0yQXb4Rx2SmkiDH0TQdzyeEsiY0F4DjDSclMuxSa8NpHWAMnZK0kbqiRuNuVCh3Vx91fzGYgcKbbIahT25/oqdvMwjegOThFaWx3aQmCN0knPqmB2IWLDELtMgcoJkZRuAO2Ch08rFageVRBKIjshO+6Gg7FURyrPKon1RTKpFMKNI91WPuslMq1BtlCoCUO/qhBxhSSlDlWChlQlSMRGoYjCUJhXPdOpeYVYyqBCnKgoSi1ACTupyp+qViAjurDiBhVAVAqiMDpOVRIPCDKIHukUL2ycboPRO33QkCUysgmDnBTHPBAgRCGO4VADhbgp7HRnhaKYBiOFkBA3Wi3eMha1nGplTS4RgzhdHxvEYHdt1yhk+q2WzpEbxws2AdyCQCtXT2y2d+yRUYajRA+y6PTqJDPMI9FW+lmtttaAkVHbjYFdOmJgcJFKPDGVpohcrddOZjZZUTVrtY3ckBfW+g2bLCwY2PMRJXhvg/p3jXArOHlbkL6BqOmOAvP3dd+I+Z/xr6s5ltb2jHQHu1EDsFm+DLw3XSqbifO3ylcb+L7zU6+xhOGUwj/AIcuP4eq0bAqk9Nd33H0npUuqajwu0DyuT0tumnPddEOWKYlxWFJjnuMACSVzvg65f1K+urkD+UHaGnuFzfi66qOszaWx/nVvKCOF6j4S6Y3ovRaLH/MGyfU8qkN/Tu3VYW9AMb87lw7u5LKZ5cdk26rF7i9xxwsdAvr1JHyzsr7TLRtq1w+WsJJR9RtK1rZVRXYW6mGF6jp1EtGt+GtyVyPiy58SxrOJhoEBNmHn3XzGo2S0Lu9Bp/zWYXH06qo7L0nRWBsE8bLnjVr0NPEJgGUmm4E/wBU8EHI+y0ya2EZDXDI/ulAEpgZ2O6khYNI/OP1RaA4SMjhW0EGN05rQRIweyE/GNpf1aFtDiKnmghxzC203W12NVNzGu5H9wuUxtMOOsw6JAiQrF4+i1zWEPkREQAtJvrUHMJx9krwC4EjdZbfqVVgirDm/qttG6pVoLDBPCLEQWFuAiGBlOeQTMR6hBAj9lJUgjtCZTOmzqP5e7SPYJTiRvCZcfy6FGnzGo+5SCZ/RScQh/ZWc7qC5Q6o9Qoc5VFKQuH+yo6HYIB90LhKU5vZSM8Fmry+U+hQmlUb8lU+kpZcRgFD+IcMbp2jIe2pcM+ZocByCnMruLSTTfpG5WVt2NiEYuGHcx+ifKi8ynm4pOxqjtKhcHZBxykHwqm4BKE0WbtJb3grU7F5aAAfRLqMa4eb7hWxlMMH82oH9iAR7yluc9mBD/VqdgwLQ6k7JlqaKgdgHKUazThwI9CEtxDfMMt4jhM6WNYcBGEUznYLHTuBs7bgrRAIEHC6SsWGNdn0KMxKU3fCZ6halZsOaJBP2S+8/oiBMRyludBwI4ITKBtMOBGyJ9Zz5D3S1C6IBA0hJq/NOy1AaACO6DLVbCSICOMZ+q1KzimuJxlEJBypjPBCoR/skGDZU0Aq2jlEdOrGB3VoqicR2Q5Vk9tlCrEEfpyEJiSR9kfEcqpgEOCKS+Rq2PKJryCQ35Sed1TnEgA7DYIOUVuGwqdj+ykkiSICYyk6rPhMLgBJgT9SsWGEjdU4ZKLTBUWWvosIXIyIQyDuikOf91c5VFTIyFmnRHZCSpPJKjYJyYlCVsrEfVSOyuPSFFcBXG6jcZUJ+ilU9lPX7qxBKpyQrlQBWJ3U9VJOfRXJHsqJUGEqiMJYMbInQVQCggV9lFI/2WgMGRjhWc7pY3iUwDCoKoiPqgcM4RkSYRmmQ2YWtxkkSPZOpydggdIABH1UZI2K3Ga1txnnlbLH/OglYqLpGkrXaHTUBTWXfpta0YC0sJxCz0iC0LTRA1Li6xsoDAGy6FnSNWqxgySYWGl5T6Lp9KrCjd03nYGVjr6akfTOhWos7FjYhxGV0g7hYrSuKtux7TghN1rzX7eiPnfx18Ps6j1Orc1a4phrBErB8BWfgU6rQZGqJ4K6nxw55vwwO8rgAAOV0vhyxFrasbphxyVrfS6nt6G2bpYAq6jeMs7Zz3mDwOSUyg0nYSeAmW/Qjd3TbnqAllMyynxPcrMLB8OdJfdXA6jftLQM02H916O6rF08NGwTapAGloho2C8j8W9Wq29NttZNL7qsdLQMkHulffuttvenqHU6lrQ8zKQ8xGRPZeksOnEEYgclI+Bvh3/CemNddea6q+eoT33XW6jdspNNKjvyVbgvsm8rNY3wqZ8o3PdeP+LrgC0awHLjsu3UqF05yV4z4mreJeaAZDRlFrfDl2jdVX3Xq+n0zTogxkrzvTaJc9uJXrqTAKbRwFmLpbWg7+U9wnMJGztQ9cIQ0cFGAQlkbbgtMOaR2PC0se07FIDTyppHImVJrBPumNJOxWOnqaPIZHYpwrFvzNI9VF+M3MBGNykvpkCY25XWbRpXDA+3cC08chJqW5+UTIHKr6UcvQSIOEIY9rtTDpI2IW99OOMyhNLY5Uiqd1VYAKnmH6rVRqsrCRIPKzvpA+6dau8J2GSD3RqG4E1A0ckBHevm4Ldw0ABSh57tpI2JcR9Eio7VUc48nC0LE1HjCsHCqMAjKqFIQgqpVKCYUNXHZCRI9VcwpjkwnES5iS5kYWoxPfsgc0EKTLpABJOeAluBC0uYISntxhJZy44zlG2s4bOKj29kDmnhQONct3Mgo6d3DgRuFkc3CFjXTAwrE6pumVv8yA48xCpzAaZAaC08gZC5RBBM59kVKvUpuBpuLT2Uvtr8Dhpx6qNfUomN2jcI6PVgPLdW9OoO7fKVpY60uGxTrFgOdLxytTqweIadRr2y3fsmtJiCsTqZpvljhAKcyrweOV156lc7y1hx53QvJJQhwKgPK6xyq5I5lTOk4BPdUBlEYLYGFpLpgg5CMz2wlMJ1R+qaNu6WVcq4iFHbxyrBj5vskWGAhoKrvhUYIVfKcz6JCwMqOA4VgiIUMc/RSQjA/dUQBuocn0UcYb+xQSjPaFBESeNkZdqicRhAWmfRBiySTnbhdDo9TRdBxdpbBDgTAcOy58HCYxxADe2VjqbGpfy09VdRdcONBuhp3AMiVhIMd05+DjPqllpCzGt0DgEEJh3yhIzhRCfXlVGEX0VcrNiApuj0/dDphBUP2TC4uAHCGYV8qxJlXwFAAoVYkHKog/RXH0U4QlDCnCsBXykBCsyFCqJndaVQkqZUweFM9lCrnkqjjZSUR0wSTngJgoRGe6bMhKamtEHKbQOmIIdyNkx7i6SUEnsihSpLxyqaE17cY5S9JBW4zTrcgO9FupGCFz6Zhy6FE6oWmK71q7+U31C2UgJBWC1H8oN+y3UIxK4115vpsDgBPAXLodcaOqGg8w2YB9V0zRfWpOYzdwgFedvfhe/pNqXFPQ8MOoiYMei59OvL7R8L3hqWYaTJau62oZXz7+Ht2a1lTc4nWBpIO8r3THLhY6c157qXTzddf8epljGiAdpXaoNgABVVANclbumUBXuWMOASg37dvodl5PFePZdCuA0LpUqVOhQDGRgLOLb8Q8ySG8kKTy3VrqtqFvY0n1bh+Ghuw9SVr+GfhVtjW/xHq7xWvTkTtTHYL0tG2t7JpNJgBO53JXPvrou5+iiZf9QwWUsDkrh1apJ3Ur1pJAKRMlCSo8MpuedgJXgryr4129xyS5ev63W8Hp9SDkiAvG0Wl1RVan07nRaUvDowNwu/jjCw9JoaKIcdyuiG8wiQWrYAfQqFp1bqwASiiRB+4SFskDeUckqMaI9UbQFJTCQU0uwgjOMI9JhSfjK2qijApNlx+Z2YC6NveteIraA8nEGVxXucQc47DCDxH7Y94yml6XTSdzpJ54SqlCD3b3XHt7p9LyuMt7Fb6F4HCGuk8goxI5hYTIxwggg/0Wp1RroBEFA8AM/SVLA22G1X9mwPdZMzlaoDbInlzoWU/ZSpjWksLpy3goOFASGnid1RP0SyhnupP6KpzndVJTSYhIUnCjnAjaDyoBM5Qkn6K3FDCko5CF22ESE+ikUWhC4cJp2zuluCaiiBGUDyJxIhMdt6pRGJUQHKB8hMgyqqDEkYUAVS2Rok9ye6priMjdQ5GFGtMp1H29y51bwznEyt0DYjfcLlWbf/ALiWnkLuGmCPNjsi+qmdrjT7lnY8LXRex7fT0SX0yN8gcpDmmm/U3A5HC68fJ+2OudboAdPCYBM9u6zUqwc0ScrU1wcBP6L0SyuFmKdpkaRx+qIbwP8Awq0+aEwAjPKWaWZnaVYJJyjOWyMHlC2e3uVqJcYgKiTgE87pjSNUOPupUDWuIaZaDg91MhPygDnfuqPpsoxwGfurIE+6TFOkRCGDGd0ecDcdlcBoiPMeFlYAg7KCdznungFxEtiMFU9sAxiUWtSFNcJicKwQXZ2VVtbtPliNsRKtjeFmlZgnGyWcHunBp3Qlp3R6aLIQkcI/lCGeeyEEtKsgRuZ5RFuUJCiWd1GgSNRgTkq4VRI9lmpb2gE6TI4KoDH7K9KhP/YQdQDfKvEKgZON1ZB5CEgQzlT02Kr0+yVqalc+qrIVcpAgRKhP0QgE7ZV7JCFWq3Ks75SqqfooBO2VYBOAmMbBCgtjYzCPjsrj1UicKSBFvn7ochE3KkvSCEp0zPK0QQAlvaVuVmgb+q6Ftlo7rAwZW+0dGOy2w7lr8gW2iDrELFZw5oAXUba3H4c16VGpUY3ctBMe649XHTma7nTKLWUDUfg+qydRuXXLXU6WKbdyOUh11Vr06VtSy90AwvS2XQX0qLBXYQ0+YkjdcOut9O/POM3wVbG2ti4jTqcSF7W0JfUa3uuQxjKZDaYhowF1+kDVXaey51qNl9aGk6Rzusr6FV7G+C4sfOCMLsXZFQDmE/p1rrrAx5RmSqezXT6BYj8MDWfUNQbnUV3DFNkDACy2UAOI24WfqN6yi0y7ZFMDfXQE5wuBdXRc4huyz3t+azyNUN4ErMHEqxNAdO+6IOJ2SmNndNwxhcdmqTz/AMT3ALmUgdvMVzem0jUqtEblB1Gt+IvHu4Jgey7PQaAjWRtssVu+nZotDWNbEABPAwltic4RyFpgQEogIKoIlITSjid0LR2RhSQNRsxg7KhKKO6k/FT6MfLkd0vSRuN1sfRNEyw629u3ulloqDH1C1iZHHPcoRMh2fcJumHf0QkduEI6jfOZ5anmA2WxlQVG6mOkchctxEEHf0Wnp7fMSBIMYSXTumkW1KBgDUVhkwtt/UIqFg2DQD6LEflQFlxiFRyqBH2VqSTyFEIIg5gqiYHcqAicRwhJP1Vg990JSUJU5UA7oSoCPI5VExsqJ55Un/dS0LigMo94QkHlOkpzZQkdk3TCHTODtwqAmJPohLTzK0hgn1TG0Z4VamRlIuGyc2jJ2yttKgYiIWmnbwJIRpefE0erUC7DXENP7L0r6QBMjEfquN161NOkyswRpMyu7YVBeWVKruXNz78o6M+iaQZhpEk7pdzbxLqYln6haHtNOpOzhsiouOozyqMuLUoljtbN+ydQrYxxuCurXsfGbro4fyOD7Lk1KJFQkAtc3BB/ZdeO8YvOt1OuAHaWgkwM7j2RsqFxzv6LDTc0mAYI4TqbjqgL089SuPXONjgCwRhVMNkDHrsoxriyRk7Kwwl4aTC6Oe+yyZORHZWW+XAknlG5oDs8IyALcOkaikVn0kN+uVc7AiTwrEacnlRomfTZSG5rmkaTBiSraAJ3nuha4meybzO+Fi1qRZJjdCT3yr1YJ/RDg7mMLDSqtQ1DmBGMKmtCoNAVtdMwMDlVUQ7x90O3qFRJBQhxn+iDFvEmNlUAbhEJ54UkFRVAVFspgAONgrgBZ0kFvoq087J4bOVRaZ9FaiNPdQt7BM0kHKEggoOALQo7bfZEQYQFSCcKgCQVZ22VTGxSlSe/0VEcqc+hUjBCQJriCYMKpKo+igBO26UIOKsNLirYw8pzRiI+iNCmNEbIw0Kx2V8xsgqGyuDJKmmFYyFoKgzj6q24KuO6gEbqAwJVPbKY3b32VluFqVlnY3MLVbYck6funUB5hK2xXf6S01arGNHmcYC+4fC1kyy6YxlSmCXNyeV80/h30k3d6K7x5Ke3uvrrYa0NGwXl+a/h6PijlXfwt024u/xVuz8PcTksGD7hems6dvSs2UuoM8RjOWjKyU/dbqYD6el3K4a7vPde6faXV613TKbqTY8wzBPeE3pdm63Ba4ST3XatbMtLnO+UZlNp021Hl5IDQkfbDVouY3UMjkJ1nWqEhrTDeStNzp8M8NAx6pFhRLttkfRZfiH4xsujW/gseKlxtobvPqvmPVvie/v6rnGoWNJwBwF9P6x8GdM6s81K1M0653q0jBPuvMXn8LLsS6w6jTe3gVWwfuEyz8n/AE8z0DrTLXqNJt88uFU6QXZAPEr6PToiq0Oo7/6T/QrxVL+GHUx1KnWvrikKVNwIFOSTmd19Jt7IUaTWk4AiSq4y5jaZa6HCCsXXq4t7JwB8zsBejrGiGRUh0fdeA+Jrtte8LKRljcBZv03zHNtmGrWA7leysKPhUGt5AXB6Ba66ms/K3Yr0pJAhu4RBbq4P9kQPBS6TnlxDwD2ITx6pAgUbY5QKwFIwRKLMJUxlG10qRoKucoQRCIR3Un49eD8w2HI2WarSBl7PK/twVGV3U9sjkHZPLmVT5AQ4iY7LreM9s+X7YiQ5uir5HcHukOaQ4tj6nsum5rNB1tl0YO+VlrSWhpEALDTKWgRz6rX05p1t9wEg0iTDZMroWFI0nDUO5RpLu36qzyO8JBPCZVMuJ7nZJMqgXIVElUJAwpJKakmFCcKuVWfdQXKk5UAH9lB9lJCq9EUKYKkGD2UhEFJUgQVenhX6qQTgKQNJ7omsz2Ca2kSVop0fRKIZRJzC1U6ELVStzI7HdbWW+AI90amOjb5lam24jaRytTaIEJhYAN47qTlX9q2tbPYRuFw/hy4NtcVbKrjzEtnvyF6qqBPeV5Tr9o+jWbd0JDmkEx+ib7UuV3LwAt1DPqsOvSZ5V2d2Lq0bUGT8rh2KXVbny59fRZVbrS5l0gp3UqLK9M1G+WsBM/6vQrk2z206hdAcPVbKlwCySY7BRc1zZzs4KMeR/VSq4ai7adwhBggjdb56xjrnW+2ugBpBiVqa0OyIM8rjAct35HZaresWGOOV6uO3DrhteO6ug2lqb40lhOQ0wUILnMEhMbTJAAE8ldvw4/RdQDXDduBzHqjazyxGSmspw4nnlXVEjS3ykLN/TUILRTdpiZ3TAJGOVLcmlULntD3EQCeCjJJfA3WK1ABoAzzshc2InbsmPaWjUMkKi4PAAGdoQmZ5JGBAUDiAQMTynmnHljPIQ6c7bILK9pB3+qmQAd1sFIPnUYCsUREdlHcYwCd+FZbHeFs8Eg+hVPZHCDKyQBmUQnkphEcIARkHPMIpTbKoPPIVwOMIYPuskRI3KAidhlWSI2goS4cHKkE491RE77KwQd1HEQlFlsoYR5hVBSAkDsqwU0U3O4lG2jCtTO1knO3dOa0BNDAgxMK1YkTjsoBGeyox9VYJjGytSw4k4RiUrmdijE7qqMHcKyBvt6IWnPdMAGUio0CIV6T/AGVgcq9xhTNWzfKYQCMbJYbCcEwEvblabGg64rU6dMS4kABKc2T6L3X8Neim6vfxVVvkZtjlbtyazOdr6P8ACPTG9N6VSZEPc0En1XdG6W0BrQBsOEQcBheHq7dezmZDmlO/EBjcZPZZHkhRoO8LLTSbqq4aS6G9lptHDJMk8Dhcx7iHBPo1iGkN53K1BTeo1g3zOfgDbsuf0/4mtrW40VhLDzyFpq2puretpPma0ke6+M9RNyzqFYVS9lVriCO2U5rWetfomy6pZXbA6jXYZ4la33bWDymV+dukdYvbau0ZqNO4GCve9P69VLBLi3HyvWbGde8ubovO659SoXHdcSn1xj8VDC1MumVGl7HAgcqwg6xdi3tXOnzHAC8QJrXE7uJXQ65em4rloMsGFPh+38W6DnCQFit/Uek6Zai3tWt05IyVr0K2OLRAzCueSIWmFaTgjEcqyScn7qOeGjO3KYGBwBGykFoCMZVBmfVQYJAUhhqsBUHQFbXSPZSG3siIQNnhMBUn4wkYJ3THNLGhzHGfTCW5ppu0vEH1R6y5oGwiF6NczqFYVAG1BpfwZwhqsLaml2Pfb6JTmEs1DBG6K3qkQysC9mYzse4ReZfa3FteKTpA+q00ahc2o876d0ipRIAc3zNO2OEyjItakjcgBcrMbl1mcZJ/dLKY8fSEBg4QQFqoojjCGD91JJwqAn090URtsqz2SEjturzCmZRQpBgqZ7Iw08fVWGGVRF6cKw3utFOidQJEwtFO3LnTESrVjGylKfStyYELo0bKeMLo29iIBj3Vqxy6FoTwttOyIyRBXYo27GAREoy0AHZGlz6dqWgEhNDQ3EJznACBss9R8ymDAudnsEio8b/ZVVd/4SXP+yktzpHrwsV3FRkHOIIWucHvGyyOHiOIkNCFjzpY/ptwX05NB2CPRb21mVKWqm7U13/eV0a9GiWFhbqkZnK49Szfbv1WxkH8hT9oTZDiRn2RClVqGHnSG+YhLpuq6wKlCo0u2IGFrLdDTI8xGZQWN7SZhEA4NEhPo0g9y0eGHBzDsNkwVgBc10j6+yNpE+m0Jj2acIWBofL8t57rfPWM9TWi0q+GSDkHELp0RrGMRuuWGBrhmWEyD6LoWLzrIPynuvXxdjzdQ+pDW437JYEjVwMIq7xPEDZKFaQW6QOYKazFyC6UWoMzMzulg8bDuh04/orCcytuDkHGUBcZxwhc2ABH1RMYR/RGLUDyc8qQJ/srDIBcdzwhBg5H0RItGQQAY3VippgxJVOfMA7BWC0kE7hWHTHVtbYLRHdJLinwIUgbDKyYxPcQkl8nIW6pSnss76O+FlqE6gRJU/6TlQsHdKdg7SrFphwfNuhLRxuhdXAwWk+6rxQTIEeisItJj+qhAGEQqF3srwdx9VHANbq+iY1gGSjY1objCLSCM7rOoOrGNkJdndW4EJbnZ9FIc4zugDd4OFC7sFYcQFFII9VUeiNjQ4DEFWWgKFLLSMSpTBkqz33UAMzK1ANrcpjJS2pjANlA4ARJQjBRh2ELnAZTBasSmME+yW0pgkLUjNarO1fdXVOjTy5xAX3P4Y6ezpnTKVJrYdGfdfPv4e9Mpip+NuiA0bTEL2PUPirp9nLGVPEeNgzK5fL1b6dfj5/L0+srsfCwoXdxU1AP0YJ4lfOqPWq99ag026HVTpY0br6r8GdK/wAM6TTa/NVw1OJ3JK4WO1rqu6daF2o0WSuV1+vZdOtoDB4h2A3XXvrltrQdUf7D3Xkruib+satXbjsESaWKhcMumaw3nYprq7LdzRUbLTuENnTYysW/lByub1CuKt68N+UGAnA9LZNZpe6mZY4YXkPjz4aNzRd1CyZNdg/mNAy5vf6Lt9JuTSOhxlh/RdvBGDIKLTHzr4F6AK1Tx7hmpg2BC9f1D4epPBdQbpMbLp2tJlvLaTQ1pOwXTABZPCvsY+dXHTTScQ5sFZq1Q2dB7WnzOwF7vqdGm6k5zoECZXznqdTxblwb8oMBHXqNSb7ZKbXVakDJJXsulWzKFuxoEO5K43RLOXeI4YGy9A0RssxW6eTxz3VgkSRkdkuUQPfZaBjQHA8HkI6fkAgY7JWrOE1r/wDwpGa2kbZ7ICIMg4KNoa7b6hUKRBOfZSUWmN4KjSRuodbXbamqQHYyD2UhtdhHIS2MLTPfdMhSfkzqNgADifVcZ1I0XEO2GxXuqraT2RBJ7rj33TtTCR8pXTnvfti844VGIOo57K3NbBwgLTSq6HbgwEbhjsOVsCp1XMAg47cppeDQaBuSSSszmkNk/ONuyEPLWBoz3nlHd2HmZTHs1AkcLO8Q6NinU21X03PY0lrcmNggd5snC540UQoCdkYAIwUQazQZJD/TaFIvSdlYYR7d0xokp7KROIQmTQTndNZSJWsURuDgbhOZSGE6mRtErRStlqpUx/Ra6bG6gAhM9K1kjC3UrQDJCNha3srdWAOD9lFpp02MEmFbntAwsTrg/wC6U6sTmVJudXAODlAapcQTieFz/F57qm1STj6pwa6GoNBnIPKzPIBMGUl1YnCTUqR/dGLRPP78pRJ5yOyrUTjshOJMqUMa6QZIjlU5zXQCQB2CzOGp25j0VGBsrFpjy0uIBlL0lvnaDA5Vaw0h2mRyClPrOeNIw3smRaJ1UklZ3Ak9xyn+G8twMqHQylDx5vRSKoFrXS7A3UrVhBDOeUlxJ4wEECZUhF2xkmFRfiZV/liYHZAKZqfLhvJOyZA3dKc2vNJ3zNOF1G25ZVDYIXP6RT8K4aKXmLiASeSutfXBNxDDlu5Xq+P1z7ef5MtIfbltUtcdsoNA+yt1QnJPmKFzi0ySndZwEgHA9Co0GSY9lQlx23TGDIjhbgFp/wB5TGtBaICZTpS0mJndOFKBI4VoxlLCBsqFKdwtmkEZ2TPCDaZc7I4TA55pAbom0WmDHKdTY0ulwW+nRZpBjCcZ3WJtGRDW5Kb+EcBLhAWzxG0j5YDhtKw3Ne4rVC2fK3bTysd3HTmWiZaB5gugIh0kPzJ0jlZw17XN1OzuU9929rXgPOk4A4XCzq/TtMVW6QGNLhBA3XMuLAtmDAXTpXz2sh/mnBUq3NJ5JIO0LM8oc5eeqUC3cexSSyF2LpoL4blJfQ4/MtysudJCovICe6kchKdTPCfS1GPJPZND+JWcgjHKrUnFrY0h2+FT2ncZCzh59kxtUoxSoPKf7ojueZ3Co1JEOEodQlGHTACcKye42VNI7qOjbnurFqpCoESh0kK2iFrGbRtAJRiWoAUe+d0jRajxzwra0n2V4MJlNMjNpjGAQmho3OyZaUXVXBjRLicAd19Hsv4T9V6nY0q1vc29PWAS2oDITepzFJtfL3XtzpNKnWqNpT8oMBbuj0atxXZTYx9WoTADQSSV9Z6X/A6sKgd1DqLA3kUm5+6+l/C/wN0b4daDa0A+sN6j8lefruO85v04H8PfhKrQo0bvqVPS8NBbTPC+kABoAH0Sq9anb0i+o4NaEuwr/iqRrD5XGGj0XG3XSTIdWpMrUnU3iWuEELx/WBVtHfhmCJ5HIXr7isKVMuO/C8lc3Iurh7wZDTCoXP0m3talV/5Wklec6dcsvQazDqDnHbK73xDW8PpVyRvoIH2Xzj4AvzTvK9lVOC7UwH9QtSC+o+h0Aupa1yGhrvoufSbhOGFmxR0vFggrpUauqjPC8+Kqur1IWdpUe84AwPVUP2y/FnUxTp/h6bvO7eOAvJ21M1agaMklLubl95dOqPySV2ek2hYPEcPMdli3a3fUx07aiKNFrB9U8f8AZQNkDKMElaYSUxpMeyDjZUcZCkc104TmMJ+XIWRj4K2UKwA3wdwpLb5XZwUzV9QkvqB7pJnshDoKUfr7fZTfOxSgZVme6gaHH/ZEDJ7JbHRumSCEF+cC4ewSnvLsRLe5TnNDsSgLRMTAQnC61atFMVaQh0mfZcqjBjVsvWXNv41B7YMEFeUrMdTcQcaTAC689emKJ+kmOEh9EOEH6EJhJwSMKBpcR2Oy0kt2voNPhOPqCcfUJDmVy4kkBvIIwtgaeTKcBIzlHqj2wU6NV2Rox9ETraqfM2mc9l0KbZOkQBuZ4WjU6k7T9jwVXk64oo1QZ0EFW11dhgtP2XbFTVkgEcpmtjmCRtujxWuH+IcM5EbyEQvH6ZG3quyHUJy0Hg4RXRs7hzSLemxoaGwwQD6lGU65Lb54zAPsnU+oQMt8yOraUDlrJHusrrOl/wD3B6AqyryaT1IAZGVQ6jTJmDjdKp2FIt8znifWUdTpLCRoqkBWYtEb6mdpAOyhvqR/NEJFTprwNArSOMfslu6Y8f8AECsWtQu6Z/OoLmlxUWBtjVnFQdkw2NVuk62EdoVitazXZEB4Q+MwtP8AMCyuta+ogBgVfg68x5CrBsahWaPzslUXtOS/CzOtK04YBG+U5rK7qPhEAN3AKsOja4PdDSXE7ABRzQCAQ8OPdUy2rMM6gCtFdjajaek6XAQSdvorKtZ3NDfyavWVTagpkHQPtMLSKbBBfVwPSFb22m7nF8cTCsq1mq3T3GODxsEk03P/AH+i1GrbCNFEOPrkq2uuKh002aW9sAJ8RrEKBdmD+yBzNPYD7rpixrPP82ppHpkrXT6A54aXayDkl2AtTnaL3jz5LP8Aqd6o7ejUuKgYxr3EmIaF3atp0yzxXcx7xuGmSo3rVGiwttLfQNgTuV0nMn2xerW20sWWNIg6DckYZy31K5tRnhPLqpEk5hI/FVKtVz5Oo7nsmNpBx1PcXHstb+GcgGNNSsdI8s4Kf4Djk5RMLW5aIVG4IfpaMHcpjOAbRLSC5aQ1ow1sHclL8UOIzhPY4RPHZa1HMA0AAZRkEMgRqUY4EQMJrWgRAlCSnSGAR7JddwPlAgDZOLodvACyXNRrZ55C1LjNiBo3KlW7IGhn3WF1w5+2BsqpkuPuq9/pc8GhznOlxlbbeGtwJKy02y4NBknK3NplrRj3XC3XaEV2gEudP0WMknByujXBMNiQsr2jUDG261GeiA0kjsN1IaX5wjqHM9+FneDJWs0CuG6HzE8hLbUOvU7ICshwGZMeqW4EZHKvFeQoZULi3HdJewj1HoiaRJ4KMPDCOQjMWsj6eElzCF0SG1AS3feEgtBMA5TFWODKJPfS9IKSWkGCPqn7CuFYHKrlE2fr6Kxav9lG7qwO26uB7KxagCIb+vZVCINzP3ViQNkowMhCPsiCcQ2tEBOpRMEbpbN534W/ptq66umUmDzOMK+oHuf4YdB/xDqTbisyaNMyJ5K/RnTWNpUWsaIaBAXzv4FtKXTLCnQIDXEAk7SV9AtarGtDi4AcleX5Otrv8fGOkst9eUrOnqqnPA5K5/UOu0aDS2j539+AvD/EHXW0WOr3VXzHDQSucjtmfbV8UdarXFSlRpnzVXhrWjYCV7zp7G2nTqLTs1gn3hfK/gsO671sXThNGhsTtK+iX93+Rp8owmxndrL1/qIp29Z5MNa0leS+Erw3fTX13GddRxB+qD45vzR6RWaD5nDSs3wY00vh+gDjVJVitN+MK+npNTMSYXyjp10KXxJQdSPmDoML6B/EirVp9B/kNLnF4EDsvnnwt0qu68/E3DSGtMjVutT6HX0+2WdQVbdj+4Ti5croNUus9J3aV0CVmmVH1AxpcTAG68v1W/N3W0NPkBx6lauvXxA8Gmc8lcayour1hAyMLn1fw6SZNdLpVqatUS2GjJK9M1oaABgdlmsaAoUQ2M8lagBwqRm1RxsqDu+yKD9CgLc4Wga0g4VkJbd/6pgJUgwUTZjO6LUOVWDspCEogShEjZEHTupCBI3RAnhBJVtOVDRF5YRIwU9hwlgghG2OCovgD7ZrCNWO5CXoa07z6jhaKzapaQ8HSO2ySNAAj5vTJQUBAkEEnYH0Xlut0PDuSYw4br1b6hGkeHqnAB3K5/ULfRpr1qXiBhksIxPErXP2z1+3jh5X+YGFopPEfLA9crY+hbXNQu1GlJkzkAqndMeGl1KvSewchwB+y9HjXLzjNqkidlYIPKU+jUD9IMjuq8Ko3BmDyjwqncrZTeKc4BPMqqlcvdnbgLGGwfPMcxuiota5/neWs4O5V407K2UWl/zCGTkrV4VKCQ8tjgrLUfSADaDaj45J47whuKhc0tpSWxJJwZ7LU5F6GXADP3CoOafzbrG4VWtHmwTPshdrMc9keNWtrnMA8rs9ks1ANslZQX8/dW57z8rf0V41acahJiYTBVOnc4WMNqkYaSiay4cIFMn1VeavKNIrmYBJKF1d2og/ZKp0bhoJFN+eVQtbo6iKRBd+yZxR5z9ip1PMASY5jdPNRwbiQIhBRsb3UHMpkOGxT29Hv6plzY9eEzijzjOKpKgrOGJA7re34frx56gaU6n8PN/4tyBG5V/FR/JHKNzG59EDbk6jmBwF3P8ABbBhHiV3vPMBNFr0qlnw3uI2JKZ8Q/k/TztSs7VGTIwr013+VlN2fReg/GWdLNG0ZI75SqnWXiBTpU2RtAWv4pBfkrnW/Sb2sP8AKflbafw7XiatVlMHfURhLqdWu3CPEIB4GFjqV6r5Lnkk7yU+Eg8q7FDp1haCa14NWxgSUb73pdH/AC6dSq7u4gD7LzjtRySSOSg0kgu4V4w67tf4gLGkW9GlTHcCSuRfdYubkwaj9MZystRvkL4ws8wY5QdN1F7i4hPpifTukMccN4K1UWw09+ELTmMEjK0tcBssrdXh/wDPyrovnLt+ysTcwB7TJhqWQG42wk+KS7S3dMcwuaAeeVqSs2owEmQVqZtJSKQawjU6O5T3uEQz6FNyCexOqim2Sip3ZLIA22WcsLsu+itrSCc4WL3+mpGltUvqAuO/CRdVWlwaCS7kdlQcWkxvwjFGHlziNRGFhskNEiREprGAYaM90YaMF3CsOALdLcpGDt6Lmvmcndb4OrzGZWemXkTpj2QVKrxgmY2lGa1Lgq3mJAMEbJHndMjCmsuOd04GRkey6TmsXuEObBEjCB4ETiU5zSTkZSXMMydlqcMXohwJn9kp7SPZa4IyRhA4Tx9E+I8owx5ojCJzY3C1imwnP2QvpgGVYZWZjC4+Ux2QPZpcSd1r0EfKgqtLz5hnZZw6Ck0uaQRIjBSKtKI3+q32Nanb1CKzNbDuNiPZdCla2nUGaKFUNqnZr8E+xWLcak15twaB6qgB9U27t321w+lVEOaYISsrf2FgIgEIMEfsiJBUlwJVtaTsoDlEHFuQihA3Yc9kYB5CEuJM8pjCU7hEwSQvafw+s21Oph7hluwXjmNgk7AL6B/C8a69V5EgYCx8nXo8c77fTaZ0gRhN8d8QXmO0rPqgbLF1S8faUC6nRqVah+VrBJJXlemeh9Y6tQ6dbOq13gHYDkleEf0/qXxR1Cm4ktoE4AyGhbaHwv1j4ivhX6kTbUAZDDwPZfU/hzolDplsyjREwMuO6YLb+Gj4e6bQ6D0ZtKkIdpAJ5JSa9YuklP6jcBz9DT5W4XHvrgUreo9xgNaSUX3TJjx/xlUq9QvWWVs0uI+Yjhek6XRNtYUKH+loBXlPhK9u7vqN9Xe0Otqj/KXDIMxgr2dDLvZP4H3Sur9Ofe2kUhLm5AOxXljRNJxa5uhzcEFfW+i2bX22p4kFc74l+GaV1RNa38tduw/1ehQft47oBIFQLT1S9bbUSAfMdgsdu49PbVFYaXgxBXIvK7rmq4uPmOwR1ca5n7Jq6q9QmfNOfVeh6PZ+GwPeIdwsPR7E1Hh1QYG/qvSNaAIAwFie/s9X8JlG0dkLRlGFpkUjkISBurhUJCkkcomu9MK1U5hSFqEShJEyMKaQo4R7KQ2uP0RjBSA7aE6SVJfOFbYQgwjwQoD04UBIVK2n0Tqx8Ncxzg4ueSwbDYFLApsO2p3ELUWU2yHHUe7jAWfSx7yKYLj/AMu0rJUQ8uBLWCNjwEFzRqvAJJeDvOBCup4zYFQ+UbBU5wqNaHOMk5JOAPQKLk3XS6VYl1OWP5A2XIuen16HOoL1wq02wwCXbdlnrkVG6XNhvZa57vLHXErx7tdM5Bn0RCu7R5gADv3XduOml+af2K5N1Y1KZ8zYPdd+fnrlfihLa1M4cGQmltsYAaFndRaRkR3SzR3gx2C6T5Z+mf4nQpWtFzomDxBTD04aZpukndckNeDhxlMZXr0tnbLXnzWfC/trqWNcOnSS302hOtbeo2RVZDTsSNllpdTqxpeYPBWy26q5zXMLdZ7Bbl5wePUCWAvhtMHiYT6NlUfl3kas/wDizKbocyEyn12hPno6x7kLU8Wc6rW23oUo1EuI4GUYAcfKyG+qS3r/AE2NJsZ9RUITmdf6YHea1fA41pl5Z8Ohsti90NBcScDkr1vRPhIVvDNeatRzpdQp4FNsbud69guJZ/FvR6EOZ0tj3AyC+oZBXRqfxHmmWUAy3ZERTEH7rHfVvqOnHxyfZvU7cULyozwWUtJ0tpM4HqVxrttUOg+WdgNlHfFFs8uecuJkuOSfqslfrdtU+YgDha5rHXFU8ua7S4nUguXPqNMYjEBC7qdo4gl220oKl/bPMioAt+mM6JIOnS4H3S305OMp/wCMoEf5rPqi/FWRgOeJ5KLikrD+GLsBQWQ3cZXR/F2nFQAD1Qm+tBtUZ7LLU5rBUtRp8uCNliqMLDDxldZ19af6x6JNW6st3OBJCDlcxzd9JwUtzDntytdS4s9WD9FmNxRMmZHCPTXv9EVGlwgHbYJIpQC7d0xC0OuqXaUBuKcYaSSjY1JVBoB2zwntBMY+iSKx3DPomNrPIxhGxZWpoIE91KdIN1OJ8s5Kzy45cTCtrjtOFTqfgeP7a2PosBc0y/gFKdXqPMDCUId7+ia1iL1VJFsE7/qtdMccJIboExKbS1uORAWK22MpgmSYaBlCDTJICJ1MOt8kykaS0Q0bbLDSnuDazAdyVie+tXvC1hJAOOwR1AH3I1zIWum8U2y0aQd/VbZtGyQNEy4ZJ9UynAjkrKypNQ+q6Framo6eO6ZzaLTaQJYQ3fsmMtXPMvwOy6FrahggDPddW16ZUrNDmths7ld+fjk+3Lvvfp58WLT+VH+CMYB9165nRDj+YJG4haqPSgyNTpHaF0yRz214V1mY2z3hCbHsCfRfR6VjQka2NPoRBWgdNsjH8kA+izbFJfy+WOsHjdh+yU60gbL7C2xtSzQaTHN9QsN18O2VcEsbocdo2WfOflqc18mNr5sBA+gQdo/VfRLz4UrMGqgGVAONiuHc9KqUSRVpFn/UE7KsryXhkEpVRp7L0VSwEmFlfYd1WHXCcwFpx5uEnSW+YYIXarWccLHcWpbT1TPELFjcuMtat+Jb/wDUGXtEB43+qxOYQYO3C0kaZgSgYC8Ec8BZzDukgFQDdG0ljwRgjgomgPJkgHeEWktX+qkRPZWB2UhNTWZISgSVt6bRNWsBGBui30pNrbWsgzpL6zhDiML2P8JRIqhcbqdOeiuaOG4XR/hJXDbt9M78heby16PHI+w2Fj+JLgTBAkDutdK1DMEbLX0sgXFMjYiCtNxT01nD1WZWmelTzsm3dcWtvpHzuRFzaFMvfiFw7q4NeqXnbgJtUC95OTuVyOtM/E25oaoa7BjsuoxpqvDGCSU676W5rQ478rK15/p9tStaTaVFoa1uwC69o2XNA5KQaGh20Qul0ekH3IJ2GU6nrbBwo2zWngLB1rqVK0oPfUcBAwFm6r1WlY0S5zsxgckr511jqda/rufUcdA2bwi+m+ef2X1i+dfXTqxw3YD0SbG1NxVbj6pVtTdVqDGDwvT2NqKFIYzyVz+2urh1tTFKkGARHKcJ4VmAAVbSIW3NAY3TGgEShBH1UEcKQ90D1ZJhQt1AQpI1wjKuBulaSN8JgBDf6qS5lU4GVcTlC4FSUN54TWOKU1MapGIgUEogRyoGagrlCrBUXxB9NtIgVCCeeUX4psQ1oaBgEYKzvJcDiSNgggMjUJJUjKxMZP0S6DwanmyBmIUAJOTujZRlwjJ/ohB1Elzg0A8AcIBqc7IB9F0GUiSO54A2WqnasAlw3xHKkwUKD3u2x3Wg0GA/zGjT2OZV3t0LVxp6CHN3Az7LmXFatXODoB7IIOoWVrUcfDpaXH/Rhcep0wGdDvuutTo6MlxM7kmURbMkAwmbBZHnq/T6rR5RJ4hYXUKjTDm5H0XrC3kYjeUqq0Oflu/dbnTN5eUfRMZwgaDTdqZg916OpQoE+ZsHuFnqdPacsMj1C1O8HjXnbp762Xu+iykH2H2Xo63T5Ehgkdlgr9PqNMlpH0K35xz8bHLnScFXrIG0ytLrct3CWWkSCMcpl04VJ9lashCcBOpRJiJlCXO2kxwijEn6ISPpCtV9ICYyUWo/VL9f0TQeOFJByo3MmSPRWNsIYVtKiSraATlW5wgYg+iXqOYwFewYI+U+ZvCW9wB7jaVJJGMeqp7ZaATPKkOAc90bQBGoAtPCFoAAEzhUXZxypCLQXHSIHATWUsTsqofMM/RbXMeWgtiOQoECiN0QZB3RBzxhwjuoNU9/VMVQiQFAII4RO82wiFA0Dn3WozTGNyAnhpkenKBjZyPNG6MZOfspk2i0ueexOAtQbsI25S6DgKpZGeCtRaPYLNah4ZFuNs8LI50OAOy1zLABsgdRDYeRJ2CpDawGk0vl3zu/RIfq+UZ4WxxPjNkQBKGhSD6u2XFb5n4c7TOm2bqz2tAkr3Fn0ajbW4rXbtDYkDv6Jvw50mnY2Rv70aWgS1p3juuV1jqrr6qTJaxp8rBtC9HM/Ec7+67nTrm3u7k02UQGNbgncrrtcGuLQIjaF4vo114HUKTj8rjpPtsvaFudX0T1MUGHog44z7pbXAiOQpEIFO1AqNLmDyGfQrNVrClTLzwuXW6nWaCWjynYrU51mvSUq7XGJ0u5BWltTC8d/ij3iHNBcMyN1sodZYPnD2kblV+OqfJHq2uVvYyq3TUYHg7yJXIteo06sFjw8HjYrpU6oeJB+i4dcY6zrWG56HZViXCnoceW4XMuPhZjgfCqwezl6Q7IXOI9YWN6jWSvnV90mtbue0wdP6rh3lsHNJDdLhwve/ETmB0s+Y7j1Xk7uoCxwxng9115trF5x4y4aWPKWwN1Akx3hdK/YC6d5xC5b2lriP3Wupolw66Yx1EVKbg4jDhz6FY5OyOJ25QRC5Zjpo2uIG0g8FVHbZW2A2OVEKLZM/svSdDt/DbrcMkLhWVE1aoAHuvYWjA0NbtDVw+XrJjt8XO3Wp9HxumERMghcP4Iuj074jayodLS7SvT9NIfbvZ2JleT+ILV9nftu6IiDJhefm+3os2P0h0eqKjKTgcghdq5IDy52AMlfOf4e9fpdQsKFQvEgBrx2K9P1vqYqvNOi7y8kLbBXUr41nljT5GrDqJSdXKR1GyuupdNurSxqGjcVaZY17XmmWgkB0OgwYnMYRf2Z79O70Lq3RbS6qtvuqWNK4pkNcypXaCwxs7ODnY7L1XUKDXs1CIIkFfJK/wt0To3wff0utdRFt1N1J9ZlOjWaS3llOnSLf5g8oBlpLs57L6B1nqXSv4XXVvSD6F3VvTa2YmRbMfoDy0zOhjzVA7aYGwXk5/qO+bny8yerfvcz9+o9d/puepvxdb7k+s/6e69L1bqnTqPUzYvvbZl2HBppOqAODnCWtInBPAOSrPVqfTaLhE1jgDkH1Xyq36cyr8NV3s1Mru13DKDyKlE02ToZUG7y5jZLi6Q5wyNMLp9Ae/8JXtX1X1HWlTw2F5JcKZaHMDjyQDE84V8f9Veupz1Mtmz3vr19+p79w/J/Tc8y9c3cuX1n/t2eoX1W7ql9Z5zsOyz0CanliSTAjcpZ/mRPHCyfErha9KYyp4obcFzqgp4Pg02l9QT6w1vB866fL8k+Pm936jlxzfk7nE+69D0etYOufw7Ly2fdyQKTagJkbgZyRyBkLvGo1jHOqENY1pc5ziAGgCSSeB6r5z1H4fZafBtre3NSoX0SyvcUmhopBlQgEU2gDQWamlpBkEGSZXSurW/+JvhTp1Ok+nVubatUpXdO6cWtqVGNLWl4DSHZLXkRGVz5+fubz1z/dmyS/f4/Oe5+W+vg4snXPXrcts+v/L1Np1bp17WZRtOoW1atUBdTYx4JqACSWjnGccZWxpIXzv4tsekWthb21HqD7i5pOdTqU3XLXva0U3F1QgCWObDYI0xMQV9A6eXv6faOql5qOoMLjU+YnSCS717+q38Xy99ddcdzLJL6uz3v+J+mfl+Lnnnn5OLsu/cz6z/AH+2psKVHso031Kz6dOkwanPqODWtHckmAra2F5n426FfddfY0rarRbaUtZqNqH5XktDagbpIcWt8SAcatJXXu3nm3mbXLjmddSW5HdsupWF/UdTsry3uKgbqLKbwXae8bx6rS+oyjSfUqPZTpU2lz3vIDWACSSeAvmfx106n06+sW9Hq3VW+p0DVaHva59Jwc1tJ7DAIe95LSPlcJxhdb49p3HV/ia16NbQy1Y5kOdlup7naqmnZ2im10NM+Z0ry3+pvE6nc/ulk9X1bfr9f+Hp/wCFnV5vN9WW+59Sfb2Nhf2fUWPdYXdG5DIL/DcCWg/KSN88HYrS1pOBmeF84+KemO+HurWfVel3FSKdN1Sbg+I9nhxqaSI1U3sc4FpBhwkRMLtfGtv1PrBoW3R3sHT30KrrltWroZMsNPWB53CA/DYk7mFvj57fLm8/3c56n+fr9Md/BzPHqdf2383/AB9/t6ehc21yHG1ura4AMONGs2oGnsdJMJVe/sqFQ0rm/saFQbsq3VOm4ciQXArxX8L2s/EX9SlRo0TVsbGo4UqYptkiqTAHuuz1X4I6R1Lqlz1C4detuLktdUFN1OCWtDRAdTcdmjlPxfN383xT5OOfd/G/+8v/AIXy/Dz8Xy34++vU/Ob/ANtjs0r+wq1Qyj1GwqvcYayndU3uJ7AB0lbG918u6B0m0qfGtOl05gqWdnd+MyrV8N1QeDhxDmMGHVCGgHhjjOwX1Jo7bJ+D5evllvUzLn3v1/8AU/0z8/xc/FZObuzfrP8A3RDO2EQ3VhpjCsNzld3BAYKMIIyjHZSfEBTc14bvzhFVow/z5ngLf4Yc9zdgOVbKAMkiSNiUJzjROABHYLVa2z9JcecLe2mxrdTyAOSVnr3rWjRQbqPc7JSO8K2YScEblYbi4dc+WkS1vflE9xq7tnuVNAYwxtGSgsD2Bp0iXHudyra0RJz6JukT6eqF5Ew3PYpAA0AH+iFxER3VucM743KWDqnJgbAd0JHkNHyzjMpJcXHbCJ+tzu/JTfCinqOOwUWYNGuQJIUeBADRnf2TNBnJwr3nkpRApgwdlZBMtIkBObMepwAh0wD/ANygANrQcw+LTZMYMLn1ul2zx5QWn0K3vc4kCMcoRt5ck7p0Y4dbopz4TwTyHYWGt0u4YY0ah/y5Xq/DHJg7+qW5siW4PKZ3YPGPG1KNWnIcwj6JJaeQvbPZAGoap35SXWdvWk1KQHsIWp8g8HjC2DKtpIGd+y9Wek2k5pkF22SkO6BSyW1SGjuJytTuM+NjgNqkU3MHKBrZOV063RrlsljQ9vBBysNW1r0j56b2kb4WpZRhD2jgoIIORgpha4CNlWyQBp7ojkbKtIJ9VC08HHZJ+zmup+GdTTr4KU5rSyYOoGfSEJL2tzujpulonfsoJTcNXIW+lWAaBOVg2PvsrDoG2e6k6JeDPZQO0gEFYWVT8spoce+6sTRq4VtHmCVq7LTQLWsdqEvOxWoK1suXhhDWsHBICuk0aws4cCRH1TmHMnHZLOH+CdYcxb2jDZyVmY8QI+yeHlxgfdX2jNQb7IrhwcA0bNHCWxj3EjadvdE22q+ad3AyVqcs651R81YBkBeu+B+jsuKrry+IZb0s+bElefsLWkbmKx911/iLqTXVhZ2VQMs6bA0BuJxmV0kz0P8AbqfFXXGXbxa2rpt6eAe5Xmw7O6Xb0HXD/I9k+phdOh0Kq/e6otxPzLfN8WOvbPQqaXtJ+WQcL6BRuWVbenUY7U0gQfVeUp/D+03dL6FdW3oM6YwRV8Qu/IDj3T11KuZY7UhUXwPRcqp1ehSdpqHSVot+oWdZmkVRrJ+gV9TVloOrVCLQwckwuVa1Jpmk8aiflPZdi5s3XFMtY9h5BB5WW0sa1GrrezU0CTC3x1zeXPvmypb9Nc9suMTsmM6TqrCnriRMro069OAJj0K0W8Pr6uwgBN7rE4jiV+l3FqdbMhvLStvTOqltUU7g6SdnH9iu61s4OZXM6v0gXFN1W3GmqMkDlY8pfVby8/Tt0nio2fuEu7rMoUS9xwF5bp/W32tM0q0l7RAJ5HYrmdT60+qHy4hu8Ll18ft256mD61fCpUcdgV5a/uNROccJd9fFxMH2XLq1XPO+eFuScxjq21dZ2qcrM95dEmYVlxBgqnATKL1q8VaRBKVzsmvdDYGyVIyudrciH0VDJxupqWzplua9cDgZWLcbk9t3TaJp09ZEOOxXfttb2hxOe6zPpBtMNG4WqxcNPtheTu+VevieMbenVfDuyw7PH6pvULQV9TKjfKdisNbUx7ajN2mQu3Qcy+tQ9p9xy0rlfV1uZXmOmi/+HeoGvY+ek7/MpOOHBfROlfEVl1CmPOaVXmnUwQVwTbDQA/zRiVmNpSDjDSCDlanYvL3rK1I/8Rn3Wm567ZdE6ZVuqn85zS0CmxwBcXODRkmPzSfReBFItDdJfB9VdS0FxSqUazQ+jUaWua7IcCMgq662ejzJL7+m/wCIeq9G61Rq9ZZUq9P6qyiWE1arYoupl+ltRuQYLjMHIPdecs7p9l0F1IkGzsq9CsWMBPgU6hDnt3k6S4kTmHCRha/8DosIfVunucwAMq1aFKpVaBt/Mc0uJHBJlarSjaUbJ1pbUtduZ8Q1POapdhznk/MTyT+y+ffg6+W2/JJNmXPz/wDj3/z8/HJPjtuWWb+P/wBYqd/RtugXDazmMrU6b7V1JzgX+JlrQB/zS0j0I9Vq6DD39Sqsdqa+4FM4wHU2NY4AznPP0WVvQ6QDW07u5Y1oDWEBhq0m8tZVLS8D6yAvUdH6Yyjb0m0aLKVvTGmnTbsBun4vh+S98995/bM9f/Xv/sx8vzcTjrnj/wCV3/8An/cHTKllU6t/h7rhn48NL/A0uBgAOJmNOzmmJmCs/wDEC0fUsrR1OAHeNZnVgA1qZDSTP+prRzOpd+3sbBnU/wDEW2lNvUC0t8fMkFoaRvGzWjbYLbf2Nr1OyrWl7RZWt6rdL2O+4IPBG4IyDkL0/L8X8vxdfHfy8/xfLPi+Tn5J+HlOt39rf/AVKjQuKQqXtOhbU2F4JDg5hcCAeNDp7cpfSeu0uh9HtK11b1ns6nVuL/XTjRRZraMmfN5P5mN2yQMLePgbpxqONevdVqTgGVAfDa+q3HlfUa0PcDGZOV2uq9GtOpdObaVGuo06cOom2d4TqBAhpYRtAxG0Yhcp8fy9dX5Lk6kyfn/N/wCv1/h0vyfFzzPjm2bt/H49f9Hj/jHovTjaNqWl4X/jrltKpQ8Vrm1WvJJcyBILI1iTENcDwvW/C/Ua/Vfh/pl9deavdUG1Kjh+Z2xd9Yn6rhU/gnpzKk1q1Z9J2KzKdOlR8Ycte6m0O0nkTlevohgY1rGhjWANaGgANAEAAfRa+D4rz313eZzuep+/2Pn+XnrjniW9Zvu+vX6Z+m9VsepeM7p9yK4ouDahDXANPG4E+4kLD8U9fZ0a2aykxlfqNZpdRovJDGtHzVKjvy02znknA9N/T+m2XThUbYW1O3FQhzwwmHEbbkrP1TolLqVdlZ9arTc2noPh6SCJJEgg9yt/L/NPjv8AHnl+P05/H/F/JP5N8f8Au8f8GWDOoXn+OdXvKVWm94rUjWc0VLuoJDazmz5KbZ/ls+sbLd1+9Z0346tq92C238OjWFTAApy+m95M7Nc9s+hXUd8I21RrmuurgtcC0+WnkRn8q6HVug2fU7K2oVhVY61aG29em6KlHyhuDyCAJBkHkLycf0/yX4vDrmSyyz3u2Xffqf6err+o+OfL5c9Wyyz6zJ/j3fp5r+JF7bVG0rJtUPrGhVDxSioafiFtNkgHJLiYG+CvY17VlKjU1NAqsolhI7hsH9lxejfB/Tum3tK6Lqtw+idVFjm06dOk/wD9wMY1oL+zjJHC9I9ge1zXfK4Fp9ogr1fD8XU66+Tr76z/AKR5/m+Tm88/HxdnO+/9vAfwr+a5/wD9d0//AP5qr1PxR1Gr0volavat1XlQi3txnFV5hrifTLv/ANVXQPh616F4n4SpWf4lOlRmoQYZTBDAIA/1GTymdd6LQ60LZtxWuKJty9zDRcBl7dJJERIGx3GVj4fi+T4f6fwn/NN/0183y8fL/Ued/wCW44P8OLBlHplW+adTbiKNB5YWk0acjVt+Z5e/GDghevEpdva0rS2o29u0U6NCmKdNowAAAB+yaJ5Xf4finxcTifhx+b5L8vd7v5NYTxujOclLZ3TAAV0c0iBlWByFfCoOAwpPltGi2m2au7t/RZru+oU3BlI6zsQ1Yqrri6/zKkT+UYH3U8FlKnuJUtSrVZVcdbnyNgOEltNwMg77JoaXDUBgc7ZU1AQJzyFDVwARBmOUqs4Egbgbq3uMwBpB3PolOIjGfVS0LiNJ7EJLgNxtwmmXEE4HCmgveGxJ47IpKxpHLp+iEDS2IzvKMtNJ+ckcKtRc8FwURamU6cFsv3JSK1V1R3bG3oicDqLokoW6nOJ2HJUtRsjcSFUjIOJ5QunVDZ91Huk+g3UtUSZwPRLc52qDsmQT5uOUVWBtukFaf9R3VyB8mI2lW1k7GXKwCSA0emcqOAkxJ+Y8Kg0AzGP2TnUtLJeM8IAwaCSd+EAuCSTvwELW+YTutLKILQCQOwQOYWEyM8BUOEwXPgbd01zWyGaxBOCUBaRTnk4A9EDKRcRO3ZQG5oa8BrpbzGyIsaZEAhEG4I7KAQ3CUyV7Og8EOpMJOBhZq3RrR8QwsMbtK6T8ERkqyM53TtGRwKnQWF5FKrHuFkqdEuaclpDgvVAQ48Sg0zI9Uzqjxjxtbp9yz5qR9xlZXUntEFpaZ7QveeGCED6NN2C0H6LX8g8Xhjtn5ghOV7OrZWzzBpMyeBCyv6LaukQWztBTPkg8a8oQMEbplN3C7tXoLMmnVO2AQs56DWH+W4GVrzlGVz2vgrUwh7Y2THdHvGCdGqN8pX4a5Z81J49gtTqMnBpGeE1rhgn6rO19VhDXNMHfCax4Bzt6rUrNjax5Alb7GmarvKCQVyhVYI5Wml1F9FrfBEO7rrPH8sdS/h7zpXRKTmCveVWU2b75XP67fWxqOt+ls1AjSXRme4Xn2dVvKtEse4lhP2TrSQNTT5nYWfe6vUmE9OtXh73VHEmTCG/tS1xeO0rtWts7TIGefdHe2pBEtxHK6aw8wxrhBEg88IajqrCYqGR6rqXTGA6B5XTgLBegNaGjLjupraG36hXpxpqER3Wqr1q4Jlx1FYhRLaWtw9llc7JhZ9Ha03N9Vru85V2F0+nWbNSAcSdlhy7YJrKTzgNJT5ZBltdav1i5puDaVd4jctKKl8QdQp7XLz7rBSsazxOmB6pwsHCC7dZ85G8ro2/Xr2q/SXB61f8A8QXdvpzE9lzLe1a14cH6HBaxY03EOcS5H8+L+K11rb4yumRqGpo7ro0vjsgQ6hledbY02yIA7KnW7IkNBWf+In6M+GmdQ60LutUqNYWa8wFybi6e+QJhbHsaz5RlIcwEE7Kv9R/hfwMLaT3nYlSpRe0AuEDglbre4NtVkt1N2goOpXQrhoYIHIWL81rU+KOfVt6gg6dxM+iz5GO24XRt7p9EBj/MwGQeQuqyjb3NEVGtZq5A7rP81n2f4pXlnTuggnIXqTYUHGH04HcLPd9NoUWh7J0cgrX88o/iscBjZgE54XqOl2Pg2japHmdkFYLbpjXu1sdqjzBvJHovQ9LcLi0NIGS3zN9e4XH5e9np0+PjL7Z6zogkSDyhovNN8gw0rRUozLTxt/ZZnMmGjBXLXb846AJcyeOyBjq9pXFW2dEjI4cOxCu3gM0uMJ7SA6NzCtWN1Hq9vUH85ppu55Cf+LtTkV2QuQ+2YRkeqX+FZMmYRkO12XdRtaY+fV6BZKvWZkUKeO5XKNNjSchMogOdpYJTkg2tVI17uoPEeS3kLq0nCnFOmNTjgAIOmWb63la0juV6Sw6bToZAl/JKM1XrCOndOJIqXHzbhvZd6k0BsDbslsYQjEt9FqTGN0zSGiAMIg4NEb9is9WsNJ0uGoJdJxquhxgpLfTqjIlMkLH4LoDmme4RUnGYcSCNgpNQpyM5VBhGyjKhxOU9mlwwcqBTXHlMGBgfRCWkHbCoGD6cKRgM7b8hG0Qe6BhBHuiEDE/VSWRmOVAcqg4h+Y0HY+qaNLxjdSBgHHKFE9vHZUI7p1KPeUBn3THAcfZVplVEUxx9k5jhsUktKg3wgtIdKhwUmTG6NpnfdSfHWMIcTuBygqtzqOAOE5ryZI+Y8pb3AiCZ5IUiS59SB8rAq8NweABLv0VlxJBIgcdlZqE+b7KBel5JJMd1bWgDuUW7STKtrQIicqRRZEz9FQncAydj6LVVYA2dWRwlhp04+VRI0jXDoLvdA9suj9FpZQ8RxbTcNfblXVsn0wNbw0xMcowaxnDTG2yzvAECSZ39FsdRJdAIj1V06BD/ADRpGSUlj0TkYb3RFrdMNH1TajfMQBLZwQh0FoHcyhE6CDB22EKCmd9yN5TtGBmCqIIEHGPupBc3S3SAY3x3SxOmYIATnatLZBkoGseTA54SYCCT5j9ELokDYJzmCmDrMu4WaT823cqAtQg6TB7lWWEtDi/UDujo0DUaXkagNgOSrd80aYCkU5muBOOAmU2lok/dE1ri4uIiNgrLhpwc7KRZaRJVRzwo5xgTyiZ8sdlIDWmZGCrDTJRPMugeiqMxypBBIJH3KHG/ZG1pz67qAb4+ikDEShAJcD6YTXNEGMgISMDtGVIBAkoY8/tsnEYHdQs54MYUi6bZfBGOU2AAQPoUTWwSPsj0hpz91AlrTqwcbqBo0kEZmUbQQ707o2085BzuEogUQ8GQDBQVLGjUaZZnkhbW08RtOFGNAlo3jdOjI4lfpQ+Zjvok/gXsaA5mrO7V6CnSOZ+yvSACBuMhandjN5lecHi06mgsIYdjHK7NuxlG3a+q7S52wG6doFdpBzGQqNuxwh7ct2K6T5cYvxOh06sx1Nzi75dwVmv+oh4qQJA27hIp09DTB33Cn4UEE6eJgrV+aD+OuLcvfVra2zvhbKbWObNSiS4x91tbRZEBsSrawQZ5WOvl36M+NmfS8WGtYAwZA9Ul3TaIqHlpXQI0jA3wVA0TH3WPOt+EYm2dJuQ0SnCk2NhhaGsGrJgIXgAw36o8rT4wst0iOEBbPrCeGmN5U0zhu6tJD6Qdkjzd02gXsAJPlRMbJg4d2W2hR8VzaTR5ic+yLTCtWs+UZMI6tMMpkn7LXWpstqmljZYMFD4Yqw4/LwEaXOFIRqIyUqpTAaeV130gNh7rO+iBOJTocU2xcZjy/wBEurQDRge67RomJhZK1InfZWhxqlP0+qK2qVLd+ph5yDsQug6hvHKptsYUpcaqFxTuMtMO5a5PNM1KTmPbIPPZc0W8Olu47LVb3D2GKmR35WLG5SqNLTckaizTkELdRcKFTxaRBY4yY/KfUICwVDrY4eo5VUop0iYlwMEcEIrTqaWXDPFo5j5gOCsde2Lna2bjgf0UtppVPEt3aSRlhXRpNFaC5pY459JWfr6NY6VI1GTU8h2lIgUnEl+rsupeU3mo1gZJOCdkH+Eh0F/7q2LGCldB5cCYAWSvdPqv0UQYHK7rOmUdURIK6Nl0ugwyxg9SmC9PNWfS7m5eNQLR3K9Z0jo1KlHiZB3PZdKhagZAldGhSjYJxjQW9q2i7SyNI2IWzSRCum3KeACO60CmxyqeAQcJkZVloPuouTVZB9imUYBz9CtVxRDthBWXSWbqOttKoQByOQqe8apiCs7HiMJzHanQVKNVMg57plIhrjwsZB4Kum97HQ8Y7o1Y6LXAn3ROp6hj9Eqk5paCE7nCQVpI4TB5sHCIOg+ZGWjBbkKRLm+Xu1VSBa4ZwmHHp6Kw0EYUdW+Cl6TONk4bQfoqxyoADVcfdMLQ1qWTjG6Qoj/woW4V7lVypatrYVkdlXI7qwYQXxdznOExDB9EVMgjSRk8pbmuIAP2VU2GcGTyOFI4w4SQSRsELKcg7mAoBkgbcp9JlRw0t+XmP7qBVKk+pAaPqdlpo2rtR8Q7ZkFGHsoS0DU4bngKMqh4gmJz6KKg2hTOp0vPKqs+lcNIpRTbykuqEOcxuZO6s+E0Cfm5hSPoOo27JYIcPzclBcua4aneaO5SGEbtBwZygq1NQOrDvRSKeORjVsOUqKoOifm7JpiQQfoqzBjc8qRWktGcwdlZaM5kgJmiQC7JKjNLGHHoFJn0+aSE3wp83PCMMAJmVNIiST6AKRTGl04k5VglmTEcqnuc0CBAIzHZIqefAkN5lSBUq+I4wMA4VFhdDQcco2UwRsSJjstIY1jXOG/qpBptOh2kw0eVC23JMprA55DWtxvCJ7HwNTgxhO6kzlo0uAPoSkuaAO37rS5wazSI0jlC5hjIypMxBgTxsrIAjuYTi0jG/p3VaZcOygBoHiSf0UaRqyi0uFTA8oOSmGj+ZuCpEgHgfRXnSTGUym3drhk8pvhg4iG91JkOW+UQZV+CYBdhaQ0NLmgSe6LcCRMKLL4fygDPdMDJGy0ATOI9FYIa0x9SpMxaNfuFCwuM8dlq8JppgDJHKttMluTgKDLogyNkTnHfuExzS4QMcKw2WjGyYgOnGPVVpAfMbpsDRjcYKgadIkKRboDwBxlLqNcHaiMLSWbHYjCY0a2w8YHKgyBmlwIHKNw07hOeWsZDPM4IBLh6qJdOnqfJOOU1zWuO8cIyNTYGO6FrDupFOocg/RU6iCDx2C1QBA57KFurHKg55aGDueVTGhzsiCP1WipQIMkSqNMgQB7FSK2wfuo1ue87KzTJK00qJMY+vZSZgwiTsjZSJMxutYoF0g7rVSohlPzZPEpLnfhyMnjK1dNYA99aSIGkKVAXVNI27rXSttUNY6BEz3PKyYzeC+u8udhk49VsFABoA42Ww0GhzGbNAkgKyzkbSpOe9gIj7lZ3sjEbrqvogEmPKefVYLqmQCRuEwVmfSGnOyy1KOqQAt9N2tsFMdRBZjcbKTlNtgaedwdlbKMrpeED5XYkZIVsoBpjcDlQc42smYQOtQRsuyaInCY23/8ACi4NO0c09vVN8FwHBHZdo2/EKG1CKpXGbQDohmfRbGCrp0jHquhRtYzEAIm0cmEYdZWNqu3dJG5WijReTJWmnRDYzIK2U2NIgKyLWelbntK3W9GI8uyOlTjY+61MogZD4SF0mARha6cTyltaB+bKayZkOUTGwMoyAdjuhyRwFATspLkwoCqc49kIJnKkdpMTys1duTjC0NdiJSaji4HlSZmN80BaBTIbJGO6luNbgCNsArTXhrIGIQdZZxP0TaJ1YWdrnF2mFqotUmymwBvYprW59kljvKtFNwgJC2tBBB39UDiWfKY9DsrqTOpuUAfJAITg+hNc1+Dhw4Kmkt9VAWOkR7q9D2iWnUOxQU1ZzhFAI/ZAHBxgjS7sVckEYkJSF+kaTkIWgSTsO6OZ3EqaSAYHlO4QkjeEKJkAxwo5pG2yUHMYVtk77qAYxwpqOyg+MGm7VAwD90bKTmTOARuVFEKI0idIwFoo1XMGM9hsFFFrFQ1GvedRwDurZTIaIMcqKLJQ04J14J2UFAR3HcqKJqIqQwO78ALM0SZd9FFECi06WzM4+ytjXESNgoomKCeIAM8RCBuZcQIGB2UUQRapB/7wlEEyfoAoopAqkucMTHZUaRMOgwcwoohDpsDGmck7She4hvf27KKJCHW46h5TsCic3yQ7JGw4UUTUjWaRJE4wrawvGAcYlRRBWKRf5QJI2RhmlpESVFFCI1hBzsh0Fzoj6KKKUE2mAZ9NlTZJ2gDZRRRVpg57ImNyQeyiiYhGGtd3SNZMgdlFEAyjJmN02NxEEqKJVAdQJB5RsAwO6iiksU5JxgpjGAFRRTMUWhrpO/dLfUaTAwooo0IYDgAzuj0xgDdRRSpjGz7conNAAxvwoohEPohzg87jsmaTGON1FEhbWua0zlp2CFtOTjnZRRRo6dAgaiJE5C10aTXEgDbdRRRhzWCMtykXIDm6Rv6KKKiDbUXOdp/LyVufTNA03MiDgj0UUQ1Gn5qRcG+aNlUSxoA3UUUqFzSAWn3Cx1z5YAnuoomM1i0w6RgdlpY7ykBRRIFTomZ3KfTokDPPCiiqIdRaGPkgHEEHZW2n2UURDRhk8KCiTMZUUVTIPTDS3nsibRjMZUUQTfBERz3RBugCRhRRQjVScx8ad+QtAkcKKIjVOpQcwmBwB2hRRIFIiRkIZIUUUha53CAlRRSHqxCEt1HG5UUUmqlS8Nsztv7pFRxec7KKKS2NHG6eBuoopIx0+hTWO4CiiUMPKt0GDyoooCa780ZCMVAQe6iikslrx5gPdQNLflMjsVFFUiEEzsUWQc/ooohAIBJn6FV5mnO3CiiktjhJkY9FbmgiQookP//Z"
}],
"parameters": {
"confidenceThreshold": 0.5,
"maxPredictions": 5
}
}
-
Haz clic en Archivo > Guardar, luego, selecciona tu ruta en el menú desplegable (/home/student_xx_xxxxx).
-
Nombra a tu archivo como payload.json
y, luego, haz clic en Guardar.
A fines de referencia, el contenido que proporcionaste es una cadena de Base64 de la siguiente imagen.
- Luego, configura las siguientes variables de entorno. Copia la URL del proxy de AutoML que recuperaste antes.
AUTOML_PROXY=<automl-proxy url>
INPUT_DATA_FILE=payload.json
- Realiza una solicitud a la API para el extremo del proxy de AutoML para requerir la predicción del modelo alojado:
curl -X POST -H "Content-Type: application/json" $AUTOML_PROXY/v1 -d "@${INPUT_DATA_FILE}"
Si ejecutaste una predicción exitosa, el resultado debería parecerse al siguiente:
{"predictions":[{"confidences":[0.951557755],"displayNames":["bumper"],"ids":["1960986684719890432"]}],"deployedModelId":"4271461936421404672","model":"projects/1030115194620/locations/"{{{project_0.default_region | REGION}}}"/models/2143634257791156224","modelDisplayName":"damaged_car_parts_vertex","modelVersionId":"1"}
Para este modelo, los resultados de la predicción son bastante intuitivos. El campo displayNames
debería predecir correctamente un parachoques
con un umbral de alta confianza. Ahora, puedes cambiar el valor de la imagen codificada con Base64 en el archivo JSON que creaste.
Haz clic en Revisar mi progreso para verificar el objetivo. Crear la solicitud de predicción
-
Haz clic con el botón derecho en cada imagen que se encuentra a continuación y, luego, selecciona Guardar imagen como….
-
Sigue las indicaciones para guardar cada imagen con un nombre único. (Pista: Asigna un nombre sencillo como “Imagen1”, “Imagen2” para facilitar la carga más adelante).
-
Abre el codificador de imágenes Base64. Sigue las instrucciones para cargar y codificar una imagen en un string de Base64.
-
Reemplaza el valor del string codificado con Base64 en el campo contenido
en el archivo de carga útil JSON y ejecuta la predicción nuevamente. Repite lo mismo con las otras imágenes.
¿Cómo le fue al modelo? ¿Predijo las tres imágenes correctamente? Deberías ver los siguientes resultados, respectivamente:
{"predictions":[{"ids":["5419751198540431360"],"confidences":[0.985487759],"displayNames":["engine_compartment"]}],"deployedModelId":"4271461936421404672","model":"projects/1030115194620/locations/"{{{project_0.default_region | REGION}}}"/models/2143634257791156224","modelDisplayName":"damaged_car_parts_vertex","modelVersionId":"1"}
{"predictions":[{"displayNames":["hood"],"ids":["3113908189326737408"],"confidences":[0.962432086]}],"deployedModelId":"4271461936421404672","model":"projects/1030115194620/locations/"{{{project_0.default_region | REGION}}}"/models/2143634257791156224","modelDisplayName":"damaged_car_parts_vertex","modelVersionId":"1"}
¡Felicitaciones!
En este lab, aprendiste a entrenar tu propio modelo de aprendizaje automático personalizado y a generar predicciones en un modelo alojado mediante una solicitud a la API. Subiste imágenes de entrenamiento a Cloud Storage y usaste un archivo CSV para que Vertex AI las encontrara. Inspeccionaste las imágenes etiquetadas para descubrir discrepancias antes de, finalmente, evaluar un modelo entrenado. Ya tienes el conocimiento necesario para entrenar un modelo en tu propio conjunto de datos de imágenes.
Próximos pasos y más información
Capacitación y certificación de Google Cloud
Recibe la formación que necesitas para aprovechar al máximo las tecnologías de Google Cloud. Nuestras clases incluyen habilidades técnicas y recomendaciones para ayudarte a avanzar rápidamente y a seguir aprendiendo. Para que puedas realizar nuestros cursos cuando más te convenga, ofrecemos distintos tipos de capacitación de nivel básico a avanzado: a pedido, presenciales y virtuales. Las certificaciones te ayudan a validar y demostrar tus habilidades y tu conocimiento técnico respecto a las tecnologías de Google Cloud.
Última actualización del manual: 17 de enero de 2024
Prueba más reciente del lab: 17 de enero de 2024
Copyright 2024 Google LLC. All rights reserved. Google y el logotipo de Google son marcas de Google LLC. Los demás nombres de productos y empresas pueden ser marcas de las respectivas empresas a las que estén asociados.