Machine Learning with TensorFlow in Vertex AI Rezensionen
Wird geladen…
Keine Ergebnisse gefunden.

    Machine Learning with TensorFlow in Vertex AI Rezensionen

    13794 Rezensionen

    Altair Z. · Vor mehr als ein Jahr überprüft

    could only get a score of 80% as task 6 kept failing due to error listed below: Google Cloud Self-Paced Labs Machine Learning with TensorFlow in Vertex AI - GSP273 Task 6 gs://qwiklabs-gcp-00-905ba1094efe-dsongcp/ch9/trained_model/export/flights_20230726-210005/ Using endpoint [https://us-central1-aiplatform.googleapis.com/] Endpoint for flights_xai-20230726-215121 already exists Using endpoint [https://us-central1-aiplatform.googleapis.com/] ENDPOINT_ID=6499675026667601920 Using endpoint [https://us-central1-aiplatform.googleapis.com/] Using endpoint [https://us-central1-aiplatform.googleapis.com/] Waiting for operation [7021920166275448832]... ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................failed. ERROR: (gcloud.beta.ai.models.upload) Error occurred in Explanation preprocessing. <class 'ValueError'> NodeDef mentions attr 'Tsegmentids' not in Op<name=SparseSegmentMean; signature=data:T, indices:Tidx, segment_ids:int32 -> output:T; attr=T:type,allowed=[DT_FLOAT, DT_DOUBLE]; attr=Tidx:type,default=DT_INT32,allowed=[DT_INT32, DT_INT64]>; NodeDef: {{node model_3/deep_inputs/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding_weights/embedding_lookup_sparse}}. (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.). Using endpoint [https://us-central1-aiplatform.googleapis.com/] MODEL_ID= Using endpoint [https://us-central1-aiplatform.googleapis.com/] ERROR: (gcloud.beta.ai.endpoints.deploy-model) could not parse resource [] --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[42], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2478, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2476 with self.builtin_trap: 2477 args = (magic_arg_s, cell) -> 2478 result = fn(*args, **kwargs) 2480 # The code below prevents the output from being displayed 2481 # when using magics with decodator @output_can_be_silenced 2482 # when the last Python token in the expression is a ';'. 2483 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n'' returned non-zero exit status 1.

    Paul C. · Vor mehr als ein Jahr überprüft

    tzeng p. · Vor mehr als ein Jahr überprüft

    Ricardo Angel M. · Vor mehr als ein Jahr überprüft

    pauline C. · Vor mehr als ein Jahr überprüft

    Dmitriy K. · Vor mehr als ein Jahr überprüft

    errors

    Altair Z. · Vor mehr als ein Jahr überprüft

    only copy & paste

    Mario M. · Vor mehr als ein Jahr überprüft

    Mustafa M. · Vor mehr als ein Jahr überprüft

    Kirankumar A. · Vor mehr als ein Jahr überprüft

    John M. · Vor mehr als ein Jahr überprüft

    Weizheng Z. · Vor mehr als ein Jahr überprüft

    Vinayak S. · Vor mehr als ein Jahr überprüft

    Muhammad A. · Vor mehr als ein Jahr überprüft

    Radhakrishna S. · Vor mehr als ein Jahr überprüft

    Errors out at step 6 for me

    DeeAnn D. · Vor mehr als ein Jahr überprüft

    Chirag P. · Vor mehr als ein Jahr überprüft

    Sokil, J. · Vor mehr als ein Jahr überprüft

    André M. · Vor mehr als ein Jahr überprüft

    Sokil, J. · Vor mehr als ein Jahr überprüft

    Ken P. · Vor mehr als ein Jahr überprüft

    It doesnt work

    Daniel S. · Vor mehr als ein Jahr überprüft

    It doesnt work

    Daniel S. · Vor mehr als ein Jahr überprüft

    Vishnu S. · Vor mehr als ein Jahr überprüft

    Stephen W. · Vor mehr als ein Jahr überprüft

    Wir können nicht garantieren, dass die veröffentlichten Rezensionen von Verbrauchern stammen, die die Produkte gekauft oder genutzt haben. Die Rezensionen werden von Google nicht überprüft.