리뷰 Machine Learning with TensorFlow in Vertex AI개
리뷰 13791개
Jorge V. · 1년 초과 전에 리뷰됨
chong y. · 1년 초과 전에 리뷰됨
Carlos A. · 1년 초과 전에 리뷰됨
Paramvir B. · 1년 초과 전에 리뷰됨
Yuji S. · 1년 초과 전에 리뷰됨
not enough time. the last task has errors. and no instruction on how to solve it.
Waliur R. · 1년 초과 전에 리뷰됨
WILLIAM H. · 1년 초과 전에 리뷰됨
could only get a score of 80% as task 6 kept failing due to error listed below: Google Cloud Self-Paced Labs Machine Learning with TensorFlow in Vertex AI - GSP273 Task 6 gs://qwiklabs-gcp-00-905ba1094efe-dsongcp/ch9/trained_model/export/flights_20230726-210005/ Using endpoint [https://us-central1-aiplatform.googleapis.com/] Endpoint for flights_xai-20230726-215121 already exists Using endpoint [https://us-central1-aiplatform.googleapis.com/] ENDPOINT_ID=6499675026667601920 Using endpoint [https://us-central1-aiplatform.googleapis.com/] Using endpoint [https://us-central1-aiplatform.googleapis.com/] Waiting for operation [7021920166275448832]... ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................failed. ERROR: (gcloud.beta.ai.models.upload) Error occurred in Explanation preprocessing. <class 'ValueError'> NodeDef mentions attr 'Tsegmentids' not in Op<name=SparseSegmentMean; signature=data:T, indices:Tidx, segment_ids:int32 -> output:T; attr=T:type,allowed=[DT_FLOAT, DT_DOUBLE]; attr=Tidx:type,default=DT_INT32,allowed=[DT_INT32, DT_INT64]>; NodeDef: {{node model_3/deep_inputs/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding_weights/embedding_lookup_sparse}}. (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.). Using endpoint [https://us-central1-aiplatform.googleapis.com/] MODEL_ID= Using endpoint [https://us-central1-aiplatform.googleapis.com/] ERROR: (gcloud.beta.ai.endpoints.deploy-model) could not parse resource [] --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[42], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2478, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2476 with self.builtin_trap: 2477 args = (magic_arg_s, cell) -> 2478 result = fn(*args, **kwargs) 2480 # The code below prevents the output from being displayed 2481 # when using magics with decodator @output_can_be_silenced 2482 # when the last Python token in the expression is a ';'. 2483 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n'' returned non-zero exit status 1.
Paul C. · 1년 초과 전에 리뷰됨
I can't finish this lab because some trouble when deploy ai model at lát step
Tung L. · 1년 초과 전에 리뷰됨
Anawat T. · 1년 초과 전에 리뷰됨
Shinto T. · 1년 초과 전에 리뷰됨
chong y. · 1년 초과 전에 리뷰됨
fix your notebooks please
Mikael M. · 1년 초과 전에 리뷰됨
Mikael M. · 1년 초과 전에 리뷰됨
Not working, not able to create Jupyter notebook because 'no resources available'
Javier V. · 1년 초과 전에 리뷰됨
Claudia F. · 1년 초과 전에 리뷰됨
Nguyễn X. · 1년 초과 전에 리뷰됨
Kaung M. · 1년 초과 전에 리뷰됨
could only get a score of 80% as task 6 kept failing due to error listed below: Google Cloud Self-Paced Labs Machine Learning with TensorFlow in Vertex AI - GSP273 Task 6 gs://qwiklabs-gcp-00-905ba1094efe-dsongcp/ch9/trained_model/export/flights_20230726-210005/ Using endpoint [https://us-central1-aiplatform.googleapis.com/] Endpoint for flights_xai-20230726-215121 already exists Using endpoint [https://us-central1-aiplatform.googleapis.com/] ENDPOINT_ID=6499675026667601920 Using endpoint [https://us-central1-aiplatform.googleapis.com/] Using endpoint [https://us-central1-aiplatform.googleapis.com/] Waiting for operation [7021920166275448832]... ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................failed. ERROR: (gcloud.beta.ai.models.upload) Error occurred in Explanation preprocessing. <class 'ValueError'> NodeDef mentions attr 'Tsegmentids' not in Op<name=SparseSegmentMean; signature=data:T, indices:Tidx, segment_ids:int32 -> output:T; attr=T:type,allowed=[DT_FLOAT, DT_DOUBLE]; attr=Tidx:type,default=DT_INT32,allowed=[DT_INT32, DT_INT64]>; NodeDef: {{node model_3/deep_inputs/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding_weights/embedding_lookup_sparse}}. (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.). Using endpoint [https://us-central1-aiplatform.googleapis.com/] MODEL_ID= Using endpoint [https://us-central1-aiplatform.googleapis.com/] ERROR: (gcloud.beta.ai.endpoints.deploy-model) could not parse resource [] --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[42], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2478, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2476 with self.builtin_trap: 2477 args = (magic_arg_s, cell) -> 2478 result = fn(*args, **kwargs) 2480 # The code below prevents the output from being displayed 2481 # when using magics with decodator @output_can_be_silenced 2482 # when the last Python token in the expression is a ';'. 2483 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n'' returned non-zero exit status 1.
Paul C. · 1년 초과 전에 리뷰됨
Too many issues from the start
Claudia F. · 1년 초과 전에 리뷰됨
Altair Z. · 1년 초과 전에 리뷰됨
could only get a score of 80% as task 6 kept failing due to error listed below: Google Cloud Self-Paced Labs Machine Learning with TensorFlow in Vertex AI - GSP273 Task 6 gs://qwiklabs-gcp-00-905ba1094efe-dsongcp/ch9/trained_model/export/flights_20230726-210005/ Using endpoint [https://us-central1-aiplatform.googleapis.com/] Endpoint for flights_xai-20230726-215121 already exists Using endpoint [https://us-central1-aiplatform.googleapis.com/] ENDPOINT_ID=6499675026667601920 Using endpoint [https://us-central1-aiplatform.googleapis.com/] Using endpoint [https://us-central1-aiplatform.googleapis.com/] Waiting for operation [7021920166275448832]... ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................failed. ERROR: (gcloud.beta.ai.models.upload) Error occurred in Explanation preprocessing. <class 'ValueError'> NodeDef mentions attr 'Tsegmentids' not in Op<name=SparseSegmentMean; signature=data:T, indices:Tidx, segment_ids:int32 -> output:T; attr=T:type,allowed=[DT_FLOAT, DT_DOUBLE]; attr=Tidx:type,default=DT_INT32,allowed=[DT_INT32, DT_INT64]>; NodeDef: {{node model_3/deep_inputs/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding/arr_airport_lat_bucketized_X_arr_airport_lon_bucketized_X_dep_airport_lat_bucketized_X_dep_airport_lon_bucketized_embedding_weights/embedding_lookup_sparse}}. (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.). Using endpoint [https://us-central1-aiplatform.googleapis.com/] MODEL_ID= Using endpoint [https://us-central1-aiplatform.googleapis.com/] ERROR: (gcloud.beta.ai.endpoints.deploy-model) could not parse resource [] --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[42], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', '# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n') File /opt/conda/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2478, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2476 with self.builtin_trap: 2477 args = (magic_arg_s, cell) -> 2478 result = fn(*args, **kwargs) 2480 # The code below prevents the output from being displayed 2481 # when using magics with decodator @output_can_be_silenced 2482 # when the last Python token in the expression is a ';'. 2483 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:154, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell) 152 else: 153 line = script --> 154 return self.shebang(line, cell) File /opt/conda/lib/python3.10/site-packages/IPython/core/magics/script.py:314, in ScriptMagics.shebang(self, line, cell) 309 if args.raise_error and p.returncode != 0: 310 # If we get here and p.returncode is still None, we must have 311 # killed it but not yet seen its return code. We don't wait for it, 312 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 313 rc = p.returncode or -9 --> 314 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'# note TF_VERSION set in 1st cell, but ENDPOINT_NAME is being changed\n# TF_VERSION=2-6\nENDPOINT_NAME=flights_xai\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n# create the model endpoint for deploying the model\nif [[ $(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model endpoint\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud beta ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\nENDPOINT_ID=$(gcloud beta ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n# upload the model using the parameters docker conatiner image, artifact URI, explanation method, \n# explanation path count and explanation metadata JSON file `explanation-metadata.json`. \n# Here, you keep number of feature permutations to `10` when approximating the Shapley values for explanation.\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest \\\n --artifact-uri=$EXPORT_PATH \\\n --explanation-method=sampled-shapley --explanation-path-count=10 --explanation-metadata-file=explanation-metadata.json\nMODEL_ID=$(gcloud beta ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n# deploy the model to the endpoint\ngcloud beta ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n'' returned non-zero exit status 1.
Paul C. · 1년 초과 전에 리뷰됨
tzeng p. · 1년 초과 전에 리뷰됨
Google은 게시된 리뷰가 제품을 구매 또는 사용한 소비자에 의해 작성되었음을 보증하지 않습니다. 리뷰는 Google의 인증을 거치지 않습니다.