arrow_back

简介:卷积与 TensorFlow

登录 加入
欢迎加入我们的社区,一起测试和分享您的知识!
done
学习 700 多个动手实验和课程并获得相关技能徽章

简介:卷积与 TensorFlow

实验 50 分钟 universal_currency_alt 5 个积分 show_chart 中级
info 此实验可能会提供 AI 工具来支持您学习。
欢迎加入我们的社区,一起测试和分享您的知识!
done
学习 700 多个动手实验和课程并获得相关技能徽章

GSP632

Google Cloud 自定进度实验

概览

卷积是一种过滤器,可遍历并处理图片,以提取图片中的共性特征。在本实验中,您将探索卷积过滤器。您将学习什么是卷积过滤器,并通过处理图片并提取其中的特征,了解卷积过滤器的运作机制。您还将探索 pooling 操作,它可以压缩图片并进一步凸显特征。

目标

在本实验中,您将学习如何完成以下操作:

  • 从 scipy(用于科学和技术计算的开源 Python 库)加载并生成图片
  • 创建一个 3x3 数组和卷积形式的过滤器,并了解其用于图片时的效果
  • 执行 pooling 操作,了解其对于输出结果的影响

前提条件

虽然这是一个独立的实验,但为了最大限度地提高您的学习效果,请考虑在参加本实验前先参加以下实验:

设置和要求

点击“开始实验”按钮前的注意事项

请阅读以下说明。实验是计时的,并且您无法暂停实验。计时器在您点击开始实验后即开始计时,显示 Google Cloud 资源可供您使用多长时间。

此实操实验可让您在真实的云环境中开展实验活动,免受模拟或演示环境的局限。我们会为您提供新的临时凭据,让您可以在实验规定的时间内用来登录和访问 Google Cloud。

为完成此实验,您需要:

  • 能够使用标准的互联网浏览器(建议使用 Chrome 浏览器)。
注意:请使用无痕模式或无痕浏览器窗口运行此实验。这可以避免您的个人账号与学生账号之间发生冲突,这种冲突可能导致您的个人账号产生额外费用。
  • 完成实验的时间 - 请注意,实验开始后无法暂停。
注意:如果您已有自己的个人 Google Cloud 账号或项目,请不要在此实验中使用,以避免您的账号产生额外的费用。

如何开始实验并登录 Google Cloud 控制台

  1. 点击开始实验按钮。如果该实验需要付费,系统会打开一个弹出式窗口供您选择付款方式。左侧是实验详细信息面板,其中包含以下各项:

    • 打开 Google Cloud 控制台按钮
    • 剩余时间
    • 进行该实验时必须使用的临时凭据
    • 帮助您逐步完成本实验所需的其他信息(如果需要)
  2. 点击打开 Google Cloud 控制台(如果您使用的是 Chrome 浏览器,请右键点击并选择在无痕式窗口中打开链接)。

    该实验会启动资源并打开另一个标签页,显示登录页面。

    提示:请将这些标签页安排在不同的窗口中,并将它们并排显示。

    注意:如果您看见选择账号对话框,请点击使用其他账号
  3. 如有必要,请复制下方的用户名,然后将其粘贴到登录对话框中。

    {{{user_0.username | "<用户名>"}}}

    您也可以在实验详细信息面板中找到用户名

  4. 点击下一步

  5. 复制下面的密码,然后将其粘贴到欢迎对话框中。

    {{{user_0.password | "<密码>"}}}

    您也可以在实验详细信息面板中找到密码

  6. 点击下一步

    重要提示:您必须使用实验提供的凭据。请勿使用您的 Google Cloud 账号凭据。 注意:在本次实验中使用您自己的 Google Cloud 账号可能会产生额外费用。
  7. 继续在后续页面中点击以完成相应操作:

    • 接受条款及条件。
    • 由于该账号为临时账号,请勿添加账号恢复选项或双重验证。
    • 请勿注册免费试用。

片刻之后,系统会在此标签页中打开 Google Cloud 控制台。

注意:如需查看列有 Google Cloud 产品和服务的菜单,请点击左上角的导航菜单导航菜单图标

任务 1. 在 Vertex AI Workbench 中打开笔记本

  1. 在 Google Cloud 控制台的导航菜单中依次点击 Vertex AI > Workbench

  2. 找到 实例,然后点击 Open JupyterLab(打开 JupyterLab)按钮。

Workbench 实例的 JupyterLab 界面会在新浏览器标签页中打开。

任务 2. 前往实验笔记本

  1. 点击 文件。

  2. 选择内核对话框中,从可用内核列表中选择 Python 3

  3. 在笔记本中继续本实验,并通过点击屏幕顶部的运行图标来运行每个单元。您也可以使用 Shift + Enter 来执行单元中的代码。

阅读相关说明并确保了解每个单元中发生的情况。

点击检查我的进度以验证是否完成了以下目标。 运行笔记本

恭喜!

您已完成“简介:卷积与 TensorFlow”自学实验。您启动了笔记本实例,并探索了卷积和 pooling 过程。

后续步骤/了解详情

Google Cloud 培训和认证

…可帮助您充分利用 Google Cloud 技术。我们的课程会讲解各项技能与最佳实践,可帮助您迅速上手使用并继续学习更深入的知识。我们提供从基础到高级的全方位培训,并有点播、直播和虚拟三种方式选择,让您可以按照自己的日程安排学习时间。各项认证可以帮助您核实并证明您在 Google Cloud 技术方面的技能与专业知识。

上次更新手册的时间:2024 年 10 月 9 日

上次测试实验的时间:2024 年 10 月 8 日

版权所有 2024 Google LLC 保留所有权利。Google 和 Google 徽标是 Google LLC 的商标。其他所有公司名和产品名可能是其各自相关公司的商标。

此内容目前不可用

一旦可用,我们会通过电子邮件告知您

太好了!

一旦可用,我们会通过电子邮件告知您