Cloud Dataproc is a managed Spark and Hadoop service that lets you take advantage of open source data tools for batch processing, querying, streaming, and machine learning. Cloud Dataproc automation helps you create clusters quickly, manage them easily, and save money by turning clusters off when you don't need them. With less time and money spent on administration, you can focus on your jobs and your data.
Read these instructions. Labs are timed and you cannot pause them. The timer, which starts when you click Start Lab, shows how long Google Cloud resources are made available to you.
This hands-on lab lets you do the lab activities in a real cloud environment, not in a simulation or demo environment. It does so by giving you new, temporary credentials you use to sign in and access Google Cloud for the duration of the lab.
To complete this lab, you need:
Access to a standard internet browser (Chrome browser recommended).
Note: Use an Incognito (recommended) or private browser window to run this lab. This prevents conflicts between your personal account and the student account, which may cause extra charges incurred to your personal account.
Time to complete the lab—remember, once you start, you cannot pause a lab.
Note: Use only the student account for this lab. If you use a different Google Cloud account, you may incur charges to that account.
How to start your lab and sign in to the Google Cloud console
Click the Start Lab button. If you need to pay for the lab, a dialog opens for you to select your payment method.
On the left is the Lab Details pane with the following:
The Open Google Cloud console button
Time remaining
The temporary credentials that you must use for this lab
Other information, if needed, to step through this lab
Click Open Google Cloud console (or right-click and select Open Link in Incognito Window if you are running the Chrome browser).
The lab spins up resources, and then opens another tab that shows the Sign in page.
Tip: Arrange the tabs in separate windows, side-by-side.
Note: If you see the Choose an account dialog, click Use Another Account.
If necessary, copy the Username below and paste it into the Sign in dialog.
{{{user_0.username | "Username"}}}
You can also find the Username in the Lab Details pane.
Click Next.
Copy the Password below and paste it into the Welcome dialog.
{{{user_0.password | "Password"}}}
You can also find the Password in the Lab Details pane.
Click Next.
Important: You must use the credentials the lab provides you. Do not use your Google Cloud account credentials.
Note: Using your own Google Cloud account for this lab may incur extra charges.
Click through the subsequent pages:
Accept the terms and conditions.
Do not add recovery options or two-factor authentication (because this is a temporary account).
Do not sign up for free trials.
After a few moments, the Google Cloud console opens in this tab.
Note: To access Google Cloud products and services, click the Navigation menu or type the service or product name in the Search field.
Permission to Service Account
To assign storage permission to the service account, which is required for creating a cluster:
Go to Navigation menu > IAM & Admin > IAM.
Click the pencil icon on the compute@developer.gserviceaccount.com service account.
Click on the + ADD ANOTHER ROLE button. Select role Storage Admin
Once you've selected the Storage Admin role, click on Save
Task 1. Create a Cloud Dataproc cluster
In the console, open the navigation menu () > View All Products. Under Analytics section, click on Dataproc.
To create a new cluster, click on Clusters > Create cluster. In the dialog box, click Create for Cluster on Compute Engine.
There are many parameters you can configure when creating a new cluster. Set values for the parameters listed below, and leave the default settings for the other parameters:
Parameter
Value
Name
Region
Zone
Click Configure nodes, for Manager node - Primary disk type
Standard Persistent Disk
Manager node - Series
E2
Manager node - Machine type
Worker node - Primary disk size
100
Worker node - Primary disk type
Standard Persistent Disk
Worker node - Series
E2
Worker node - Machine type
Click Customize cluster, for Internal IP only
Uncheck Configure all instances to have only internal IP addresses
Click on Create to create the new cluster. You will see the Status go from Provisioning to Running and move on to the next step once your output resembles the following:
Test completed task
Click Check my progress to verify your performed task. If you have completed the task successfully you will be granted with an assessment score.
Create a Cloud Dataproc cluster.
Task 2. Submit a Spark job to your cluster
Select Jobs to switch to Dataproc's jobs view:
Click Submit job:
Set values for the parameters listed below, leave the default settings for the other parameters:
Parameter
Value
Region
Cluster
Job type
Main class or jar
Jar files
Arguments
Click Submit.
Your job should appear in the Jobs list, which shows all your project's jobs with their cluster, type, and current status. The new job displays as "Running"—move on once you see "Succeeded" as the Status.
Test completed task
Click Check my progress to verify your performed task. If you have completed the task successfully you will granted with an assessment score.
Submit a Spark job to your cluster.
To see your completed job's output, click the job ID in the Jobs list:
To avoid scrolling, select Line Wrap to ON:
You should see that your job has successfully calculated a rough value for pi!
Task 3. Shut down your cluster
You can shut down a cluster on the Clusters page:
Select the checkbox next to the qlab cluster and click Delete:
Click CONFIRM to confirm deletion.
Task 4. Test your understanding
Below are multiple-choice questions to reinforce your understanding of this lab's concepts. Answer them to the best of your abilities.
Congratulations!
You learned how to create a Dataproc cluster, submit a Spark job, and shut down your cluster.
...helps you make the most of Google Cloud technologies. Our classes include technical skills and best practices to help you get up to speed quickly and continue your learning journey. We offer fundamental to advanced level training, with on-demand, live, and virtual options to suit your busy schedule. Certifications help you validate and prove your skill and expertise in Google Cloud technologies.
Manual Last Updated April 07, 2025
Lab Last Tested April 07, 2025
Copyright 2025 Google LLC. All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
Moduły tworzą projekt Google Cloud i zasoby na określony czas.
Moduły mają ograniczenie czasowe i nie mają funkcji wstrzymywania. Jeśli zakończysz moduł, musisz go zacząć od początku.
Aby rozpocząć, w lewym górnym rogu ekranu kliknij Rozpocznij moduł.
Użyj przeglądania prywatnego
Skopiuj podaną nazwę użytkownika i hasło do modułu.
Kliknij Otwórz konsolę w trybie prywatnym.
Zaloguj się w konsoli
Zaloguj się z użyciem danych logowania do modułu. Użycie innych danych logowania może spowodować błędy lub naliczanie opłat.
Zaakceptuj warunki i pomiń stronę zasobów przywracania.
Nie klikaj Zakończ moduł, chyba że właśnie został przez Ciebie zakończony lub chcesz go uruchomić ponownie, ponieważ spowoduje to usunięcie wyników i projektu.
Ta treść jest obecnie niedostępna
Kiedy dostępność się zmieni, wyślemy Ci e-maila z powiadomieniem
Świetnie
Kiedy dostępność się zmieni, skontaktujemy się z Tobą e-mailem
Jeden moduł, a potem drugi
Potwierdź, aby zakończyć wszystkie istniejące moduły i rozpocząć ten
Aby uruchomić moduł, użyj przeglądania prywatnego
Uruchom ten moduł w oknie incognito lub przeglądania prywatnego. Dzięki temu unikniesz konfliktu między swoim kontem osobistym a kontem do nauki, co mogłoby spowodować naliczanie dodatkowych opłat na koncie osobistym.
In this lab, you will learn how to start a managed Spark/Hadoop cluster using Dataproc, submit a sample Spark job, and shut down your cluster using the Google Cloud Console.
Czas trwania:
Konfiguracja: 0 min
·
Dostęp na 30 min
·
Ukończono w 30 min