
Before you begin
- Labs create a Google Cloud project and resources for a fixed time
- Labs have a time limit and no pause feature. If you end the lab, you'll have to restart from the beginning.
- On the top left of your screen, click Start lab to begin
Install packages and import libraries
/ 10
Be concise
/ 10
Be specific, and well-defined
/ 10
Ask one task at a time
/ 10
Watch out for hallucinations
/ 10
Using system instructions to guardrail the model from irrelevant responses
/ 10
Generative tasks lead to higher output variability
/ 10
Classification tasks reduces output variability
/ 10
Improve response quality by including examples
/ 20
このラボでは、LLM によって生成される回答の質を向上できるよう、効果的なプロンプトを設計するためのプロンプト エンジニアリングとベスト プラクティスについて説明します。一度に 1 つのタスクに焦点を当て、簡潔で、具体的かつ明確なプロンプトを作成する方法を学びます。また、生成タスクを分類タスクに変換する方法や、例を使って回答の質を高める方法などの高度な手法についても説明します。詳しくは、プロンプト設計に関する公式ドキュメントをご覧ください。
Gemini は、Google DeepMind が開発した強力な生成 AI モデルのファミリーであり、テキスト、コード、画像、音声、動画などのさまざまな形式のコンテンツを理解し、生成することができます。
Vertex AI の Gemini API は、Gemini モデルを操作するための統合インターフェースを提供します。これにより、開発者は強力な AI 機能をアプリケーションに簡単に組み込むことができます。最新バージョンの詳細情報と具体的な機能については、Gemini の公式ドキュメントをご覧ください。
このラボを開始する前に、以下について理解しておく必要があります。
このラボでは、次の方法について学びます。
こちらの説明をお読みください。ラボには時間制限があり、一時停止することはできません。タイマーは、Google Cloud のリソースを利用できる時間を示しており、[ラボを開始] をクリックするとスタートします。
このハンズオンラボでは、シミュレーションやデモ環境ではなく実際のクラウド環境を使って、ラボのアクティビティを行います。そのため、ラボの受講中に Google Cloud にログインおよびアクセスするための、新しい一時的な認証情報が提供されます。
このラボを完了するためには、下記が必要です。
[ラボを開始] ボタンをクリックします。ラボの料金をお支払いいただく必要がある場合は、表示されるダイアログでお支払い方法を選択してください。 左側の [ラボの詳細] ペインには、以下が表示されます。
[Google Cloud コンソールを開く] をクリックします(Chrome ブラウザを使用している場合は、右クリックして [シークレット ウィンドウで開く] を選択します)。
ラボでリソースがスピンアップし、別のタブで [ログイン] ページが表示されます。
ヒント: タブをそれぞれ別のウィンドウで開き、並べて表示しておきましょう。
必要に応じて、下のユーザー名をコピーして、[ログイン] ダイアログに貼り付けます。
[ラボの詳細] ペインでもユーザー名を確認できます。
[次へ] をクリックします。
以下のパスワードをコピーして、[ようこそ] ダイアログに貼り付けます。
[ラボの詳細] ペインでもパスワードを確認できます。
[次へ] をクリックします。
その後次のように進みます。
その後、このタブで Google Cloud コンソールが開きます。
Google Cloud コンソールのナビゲーション メニュー()で、[Vertex AI] > [ワークベンチ] の順にクリックします。
Workbench インスタンスの JupyterLab インターフェースが新しいブラウザタブで開きます。
[Select Kernel] ダイアログで、使用可能なカーネルのリストから [Python 3] を選択します。
ノートブックの「Getting Started」(スタートガイド)セクションと「Import libraries」(ライブラリのインポート)セクションをすべて実行します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
プロンプト エンジニアリングとは、期待する回答を得るためにプロンプトをどのように設計するかに関わる分野です。「シンプルな」プロンプトを使用する目的は、プロンプトのノイズを最小限に抑えることで、LLM がプロンプトの意図を誤って解釈する可能性を減らすことです。以下に、「シンプルな」プロンプトを作成するためのガイドラインを示します。
このセクションでは、プロンプトの作成に役立つ次のベスト プラクティスについて説明します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
無関係な回答やハルシネーションが発生する可能性を減らすにはどうすればよいでしょうか。1 つは、LLM にシステム指示を設定することです。このセクションでは、システム指示の仕組みと、システム指示を使用して旅行 chatbot のハルシネーションや無関係な回答を減らす方法について説明します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
回答の質を高めるもう一つの方法は、プロンプトに例を追加することです。大規模言語モデル(LLM)は、回答方法の例からコンテキスト内で学習します。通常、回答の質を改善するには 1~5 個の例(ショット)を提示すれば十分です。例の数が多すぎると、モデルがデータを過学習して回答の質が低下する可能性があります。
従来のモデル トレーニングと同様に、例の質と分布が非常に重要です。モデルに学習させたいシナリオを代表する例を選び、例の分布(分類タスクの場合はクラスごとの例の数など)を実際の分布に合わせます。
[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。
これで完了です。このラボでは、Google Gemini で生成 AI を使用する場合のプロンプト エンジニアリングにおけるベスト プラクティスを学びました。LLM を使用して回答を得ようとする場合は、簡潔にする、具体的かつ明確にする、例を与える、一度に 1 つのタスクを頼むというベスト プラクティスに従っているユースケースを確認しました。
以下のリソースで Gemini に関する理解を深めましょう。
Google Cloud トレーニングと認定資格を通して、Google Cloud 技術を最大限に活用できるようになります。必要な技術スキルとベスト プラクティスについて取り扱うクラスでは、学習を継続的に進めることができます。トレーニングは基礎レベルから上級レベルまであり、オンデマンド、ライブ、バーチャル参加など、多忙なスケジュールにも対応できるオプションが用意されています。認定資格を取得することで、Google Cloud テクノロジーに関するスキルと知識を証明できます。
マニュアルの最終更新日: 2025 年 2 月 12 日
ラボの最終テスト日: 2025 年 2 月 12 日
Copyright 2025 Google LLC All rights reserved. Google および Google のロゴは Google LLC の商標です。その他すべての企業名および商品名はそれぞれ各社の商標または登録商標です。
このコンテンツは現在ご利用いただけません
利用可能になりましたら、メールでお知らせいたします
ありがとうございます。
利用可能になりましたら、メールでご連絡いたします
One lab at a time
Confirm to end all existing labs and start this one