Gemini は、Google の生成 AI モデルのファミリーであり、マルチモーダル ユースケース用に設計されています。Gemini API には、特定のユースケースに最適化されたさまざまなモデルが用意されています。Gemini Pro モデルは、レスポンスの精度とパフォーマンスを最大限に高めた強力なモデルです。一方、Gemini Flash モデルは、低レイテンシ、高パフォーマンスを特徴としたマルチモーダル モデルです。Gemini Flash-Lite モデルは、費用対効果と低レイテンシを重視して最適化されています。これらのモデルについて詳しくは、ドキュメントをご覧ください。
Google Cloud の Vertex AI Gemini API は、Gemini モデルを操作するための統合インターフェースを提供します。この API は、入力としてマルチモーダル プロンプト(音声、画像、動画、テキスト)をサポートし、出力としてテキスト、画像、音声を生成します。Imagen モデルは、テキストから画像を生成します。
Vertex AI は、ML モデルと AI アプリケーションのトレーニングとデプロイを行い、AI を活用したアプリケーションで使用する大規模言語モデル(LLM)をカスタマイズできる ML プラットフォームです。Vertex AI を使用すれば、データを完全に管理しながら Gemini をカスタマイズできるだけでなく、Google Cloud のその他の機能も利用して、エンタープライズ セキュリティ、安全性、プライバシー、データ ガバナンス、コンプライアンスを確保できます。Vertex AI の詳細については、このラボの最後にある「次のステップ」に記載されているリンクをご覧ください。
このラボでは、Vertex AI SDK for Python を使用して Vertex AI Gemini API を呼び出します。
目標
このラボでは、次のタスクの実行方法について学びます。
Streamlit フレームワークを使用して Python アプリを開発する
Vertex AI SDK for Python をインストールする
Vertex AI Gemini API を使用して Gemini モデル(gemini-2.0-flash)を操作するためのコードを開発する
アプリケーションをコンテナ化し、Cloud Run にデプロイしてテストする
設定
各ラボでは、新しい Google Cloud プロジェクトとリソースセットを一定時間無料で利用できます。
このアプリは Streamlit を使用して作成します。Streamlit はオープンソースの Python ライブラリで、ML やデータ サイエンス向けの Web アプリを作成するために使用されます。このアプリでは、Gemini API とモデルを操作するために Vertex AI SDK for Python ライブラリも使用します。アプリケーションからの情報は、Cloud Logging を使用してログに記録します。
cat > ~/gemini-app/app_tab1.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel
from response_utils import *
import logging
# ユーザー入力に基づいてモデルのプロンプトを作成するdef generate_prompt():
# ストーリーのキャラクターの入力
character_name = st.text_input("Enter character name: \n\n",key="character_name",value="Mittens")
character_type = st.text_input("What type of character is it? \n\n",key="character_type",value="Cat")
character_persona = st.text_input("What personality does the character have? \n\n",
key="character_persona",value="Mitten is a very friendly cat.")
character_location = st.text_input("Where does the character live? \n\n",key="character_location",value="Andromeda Galaxy")
# ストーリーの長さと前提
length_of_story = st.radio("Select the length of the story: \n\n",["Short","Long"],key="length_of_story",horizontal=True)
story_premise = st.multiselect("What is the story premise? (can select multiple) \n\n",["Love","Adventure","Mystery","Horror","Comedy","Sci-Fi","Fantasy","Thriller"],key="story_premise",default=["Love","Adventure"])
creative_control = st.radio("Select the creativity level: \n\n",["Low","High"],key="creative_control",horizontal=True)
if creative_control == "Low":
temperature = 0.30
else:
temperature = 0.95
prompt = f"""Write a {length_of_story} story based on the following premise: \n
character_name: {character_name} \n
character_type: {character_type} \n
character_persona: {character_persona} \n
character_location: {character_location} \n
story_premise: {",".join(story_premise)} \n
If the story is "short", then make sure to have 5 chapters or else if it is "long" then 10 chapters.
Important point is that each chapter should be generated based on the premise given above.
First start by giving the book introduction, chapter introductions and then each chapter. It should also have a proper ending.
The book should have a prologue and an epilogue.
"""
return temperature, prompt
# [Story] タブをレンダリングしてモデルを呼び出し、モデルのプロンプトとレスポンスを表示する関数
def render_story_tab (text_model: GenerativeModel):
st.subheader("Generate a story")
temperature, prompt = generate_prompt()
config = {
"temperature": temperature,
"max_output_tokens": 2048,
}
generate_t2t = st.button("Generate my story", key="generate_t2t")
if generate_t2t and prompt:
# st.write(prompt)
with st.spinner("Generating your story using Gemini..."):
first_tab1, first_tab2 = st.tabs(["Story response", "Prompt"])
with first_tab1:
response = get_gemini_text_response(text_model, prompt, generation_config=config)
if response:
st.write("Your story:")
st.write(response)
logging.info(response)
with first_tab2:
st.text(prompt)
EOF
generate_prompt 関数は、Gemini API に渡すテキスト プロンプトを生成します。プロンプト文字列は、ユーザーがタブの UI にストーリーのキャラクターとして入力した値と、ストーリーの長さ(短編、長編)、クリエイティビティ レベル(低、高)、ストーリーの前提などのオプションを連結して作成されます。
この関数は、選択されたストーリーのクリエイティビティ レベルに基づく temperature の値も返します。この値が temperature 構成パラメータとしてモデルに渡されて、モデルの予測のランダム化が制御されます。max_output_tokens 構成パラメータは、メッセージごとに生成する出力トークンの最大数を指定します。
cat > ~/gemini-app/app_tab2.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel
from response_utils import *
import logging
# ユーザー入力に基づいてモデルのプロンプトを作成する
def generate_prompt():
product_name = st.text_input("What is the name of the product? \n\n",key="product_name",value="ZomZoo")
product_category = st.radio("Select your product category: \n\n",["Clothing","Electronics","Food","Health & Beauty","Home & Garden"],key="product_category",horizontal=True)
st.write("Select your target audience: ")
target_audience_age = st.radio("Target age: \n\n",["18-24","25-34","35-44","45-54","55-64","65+"],key="target_audience_age",horizontal=True)
# target_audience_gender = st.radio("Target gender: \n\n",["male","female","trans","non-binary","others"],key="target_audience_gender",horizontal=True)
target_audience_location = st.radio("Target location: \n\n",["Urban", "Suburban","Rural"],key="target_audience_location",horizontal=True)
st.write("Select your marketing campaign goal: ")
campaign_goal = st.multiselect("Select your marketing campaign goal: \n\n",["Increase brand awareness","Generate leads","Drive sales","Improve brand sentiment"],key="campaign_goal",default=["Increase brand awareness","Generate leads"])
if campaign_goal is None:
campaign_goal = ["Increase brand awareness","Generate leads"]
brand_voice = st.radio("Select your brand voice: \n\n",["Formal","Informal","Serious","Humorous"],key="brand_voice",horizontal=True)
estimated_budget = st.radio("Select your estimated budget ($): \n\n",["1,000-5,000","5,000-10,000","10,000-20,000","20,000+"],key="estimated_budget",horizontal=True)
prompt = f"""Generate a marketing campaign for {product_name}, a {product_category} designed for the age group: {target_audience_age}.
The target location is this: {target_audience_location}.
Aim to primarily achieve {campaign_goal}.
Emphasize the product's unique selling proposition while using a {brand_voice} tone of voice.
Allocate the total budget of {estimated_budget}.
With these inputs, make sure to follow following guidelines and generate the marketing campaign with proper headlines: \n
- Briefly describe the company, its values, mission, and target audience.
- Highlight any relevant brand guidelines or messaging frameworks.
- Provide a concise overview of the campaign's objectives and goals.
- Briefly explain the product or service being promoted.
- Define your ideal customer with clear demographics, psychographics, and behavioral insights.
- Understand their needs, wants, motivations, and pain points.
- Clearly articulate the desired outcomes for the campaign.
- Use SMART goals (Specific, Measurable, Achievable, Relevant, and Time-bound) for clarity.
- Define key performance indicators (KPIs) to track progress and success.
- Specify the primary and secondary goals of the campaign.
- Examples include brand awareness, lead generation, sales growth, or website traffic.
- Clearly define what differentiates your product or service from competitors.
- Emphasize the value proposition and unique benefits offered to the target audience.
- Define the desired tone and personality of the campaign messaging.
- Identify the specific channels you will use to reach your target audience.
- Clearly state the desired action you want the audience to take.
- Make it specific, compelling, and easy to understand.
- Identify and analyze your key competitors in the market.
- Understand their strengths and weaknesses, target audience, and marketing strategies.
- Develop a differentiation strategy to stand out from the competition.
- Define how you will track the success of the campaign.
- Use relevant KPIs to measure performance and return on investment (ROI).
Provide bullet points and headlines for the marketing campaign. Do not produce any empty lines. Be very succinct and to the point.
"""
return prompt
# [Story] タブをレンダリングし、モデルを呼び出して、モデルのプロンプトとレスポンスを表示する関数
def render_mktg_campaign_tab (text_model: GenerativeModel):
st.subheader("Generate a marketing campaign")
prompt = generate_prompt()
config = {
"temperature": 0.8,
"max_output_tokens": 2048,
}
generate_t2m = st.button("Generate campaign", key="generate_t2m")
if generate_t2m and prompt:
# st.write(prompt)
with st.spinner("Generating a marketing campaign using Gemini..."):
first_tab1, first_tab2 = st.tabs(["Campaign response", "Prompt"])
with first_tab1:
response = get_gemini_text_response(text_model, prompt, generation_config=config)
if response:
st.write("Marketing campaign:")
st.write(response)
logging.info(response)
with first_tab2:
st.text(prompt)
EOF
cat > ~/gemini-app/app_tab3.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel, Part
from response_utils import *
import logging
# 複数の子タブからなる [Video Playground] タブをレンダリングする
def render_video_playground_tab(multimodal_model: GenerativeModel):
video_desc, video_tags, video_highlights, video_geoloc = st.tabs(["Video description", "Video tags", "Video highlights", "Video geolocation"])
with video_desc:
video_desc_uri = "gs://cloud-training/OCBL447/gemini-app/videos/mediterraneansea.mp4"
video_desc_url = "https://storage.googleapis.com/"+video_desc_uri.split("gs://")[1]
video_desc_vid = Part.from_uri(video_desc_uri, mime_type="video/mp4")
st.video(video_desc_url)
st.write("Generate a description of the video.")
prompt = """Describe what is happening in the video and answer the following questions: \n
- What am I looking at?
- Where should I go to see it?
- What are other top 5 places in the world that look like this?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_desc_description = st.button("Generate video description", key="video_desc_description")
with tab1:
if video_desc_description and prompt:
with st.spinner("Generating video description"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_desc_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat >> ~/gemini-app/app_tab3.py <<EOF
with video_tags:
video_tags_uri = "gs://cloud-training/OCBL447/gemini-app/videos/photography.mp4"
video_tags_url = "https://storage.googleapis.com/"+video_tags_uri.split("gs://")[1]
video_tags_vid = Part.from_uri(video_tags_uri, mime_type="video/mp4")
st.video(video_tags_url)
st.write("Generate tags for the video.")
prompt = """Answer the following questions using the video only:
1. What is in the video?
2. What objects are in the video?
3. What is the action in the video?
4. Provide 5 best tags for this video?
Write the answer in table format with the questions and answers in columns.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_tags_desc = st.button("Generate video tags", key="video_tags_desc")
with tab1:
if video_tags_desc and prompt:
with st.spinner("Generating video tags"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_tags_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat >> ~/gemini-app/app_tab3.py <<EOF
with video_highlights:
video_highlights_uri = "gs://cloud-training/OCBL447/gemini-app/videos/pixel8.mp4"
video_highlights_url = "https://storage.googleapis.com/"+video_highlights_uri.split("gs://")[1]
video_highlights_vid = Part.from_uri(video_highlights_uri, mime_type="video/mp4")
st.video(video_highlights_url)
st.write("Generate highlights for the video.")
prompt = """Answer the following questions using the video only:
What is the profession of the girl in this video?
Which features of the phone are highlighted here?
Summarize the video in one paragraph.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_highlights_description = st.button("Generate video highlights", key="video_highlights_description")
with tab1:
if video_highlights_description and prompt:
with st.spinner("Generating video highlights"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_highlights_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat >> ~/gemini-app/app_tab3.py <<EOF
with video_geoloc:
video_geolocation_uri = "gs://cloud-training/OCBL447/gemini-app/videos/bus.mp4"
video_geolocation_url = "https://storage.googleapis.com/"+video_geolocation_uri.split("gs://")[1]
video_geolocation_vid = Part.from_uri(video_geolocation_uri, mime_type="video/mp4")
st.video(video_geolocation_url)
st.markdown("""Answer the following questions from the video:
- What is this video about?
- How do you know which city it is?
- What street is this?
- What is the nearest intersection?
""")
prompt = """Answer the following questions using the video only:
What is this video about?
How do you know which city it is?
What street is this?
What is the nearest intersection?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_geolocation_description = st.button("Generate", key="video_geolocation_description")
with tab1:
if video_geolocation_description and prompt:
with st.spinner("Generating location information"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_geolocation_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat > ~/gemini-app/app_tab4.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel, Part
from response_utils import *
import logging
# 複数の子タブを持つ [Image Playground] タブをレンダリングする
def render_image_playground_tab(multimodal_model: GenerativeModel):
recommendations, screens, diagrams, equations = st.tabs(["Furniture recommendation", "Oven instructions", "ER diagrams", "Math reasoning"])
with recommendations:
room_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/living_room.jpeg"
chair_1_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair1.jpeg"
chair_2_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair2.jpeg"
chair_3_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair3.jpeg"
chair_4_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair4.jpeg"
room_image_url = "https://storage.googleapis.com/"+room_image_uri.split("gs://")[1]
chair_1_image_url = "https://storage.googleapis.com/"+chair_1_image_uri.split("gs://")[1]
chair_2_image_url = "https://storage.googleapis.com/"+chair_2_image_uri.split("gs://")[1]
chair_3_image_url = "https://storage.googleapis.com/"+chair_3_image_uri.split("gs://")[1]
chair_4_image_url = "https://storage.googleapis.com/"+chair_4_image_uri.split("gs://")[1]
room_image = Part.from_uri(room_image_uri, mime_type="image/jpeg")
chair_1_image = Part.from_uri(chair_1_image_uri,mime_type="image/jpeg")
chair_2_image = Part.from_uri(chair_2_image_uri,mime_type="image/jpeg")
chair_3_image = Part.from_uri(chair_3_image_uri,mime_type="image/jpeg")
chair_4_image = Part.from_uri(chair_4_image_uri,mime_type="image/jpeg")
st.image(room_image_url,width=350, caption="Image of a living room")
st.image([chair_1_image_url,chair_2_image_url,chair_3_image_url,chair_4_image_url],width=200, caption=["Chair 1","Chair 2","Chair 3","Chair 4"])
st.write("Our expectation: Recommend a chair that would complement the given image of a living room.")
prompt_list = ["Consider the following chairs:",
"chair 1:", chair_1_image,
"chair 2:", chair_2_image,
"chair 3:", chair_3_image, "and",
"chair 4:", chair_4_image, "\n"
"For each chair, explain why it would be suitable or not suitable for the following room:",
room_image,
"Only recommend for the room provided and not other rooms. Provide your recommendation in a table format with chair name and reason as columns.",
]
tab1, tab2 = st.tabs(["Response", "Prompt"])
generate_image_description = st.button("Generate recommendation", key="generate_image_description")
with tab1:
if generate_image_description and prompt_list:
with st.spinner("Generating recommendation using Gemini..."):
response = get_gemini_vision_response(multimodal_model, prompt_list)
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt_list)
EOF
cat >> ~/gemini-app/app_tab4.py <<EOF
with screens:
oven_screen_uri = "gs://cloud-training/OCBL447/gemini-app/images/oven.jpg"
oven_screen_url = "https://storage.googleapis.com/"+oven_screen_uri.split("gs://")[1]
oven_screen_img = Part.from_uri(oven_screen_uri, mime_type="image/jpeg")
st.image(oven_screen_url, width=350, caption="Image of an oven control panel")
st.write("Provide instructions for resetting the clock on this appliance in English")
prompt = """How can I reset the clock on this appliance? Provide the instructions in English.
If instructions include buttons, also explain where those buttons are physically located.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
generate_instructions_description = st.button("Generate instructions", key="generate_instructions_description")
with tab1:
if generate_instructions_description and prompt:
with st.spinner("Generating instructions using Gemini..."):
response = get_gemini_vision_response(multimodal_model, [oven_screen_img, prompt])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt+"\n"+"input_image")
EOF
cat >> ~/gemini-app/app_tab4.py <<EOF
with diagrams:
er_diag_uri = "gs://cloud-training/OCBL447/gemini-app/images/er.png"
er_diag_url = "https://storage.googleapis.com/"+er_diag_uri.split("gs://")[1]
er_diag_img = Part.from_uri(er_diag_uri,mime_type="image/png")
st.image(er_diag_url, width=350, caption="Image of an ER diagram")
st.write("Document the entities and relationships in this ER diagram.")
prompt = """Document the entities and relationships in this ER diagram."""
tab1, tab2 = st.tabs(["Response", "Prompt"])
er_diag_img_description = st.button("Generate documentation", key="er_diag_img_description")
with tab1:
if er_diag_img_description and prompt:
with st.spinner("Generating..."):
response = get_gemini_vision_response(multimodal_model,[er_diag_img,prompt])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt+"\n"+"input_image")
EOF
cat >> ~/gemini-app/app_tab4.py <<EOF
with equations:
math_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/math_eqn.jpg"
math_image_url = "https://storage.googleapis.com/"+math_image_uri.split("gs://")[1]
math_image_img = Part.from_uri(math_image_uri,mime_type="image/jpeg")
st.image(math_image_url,width=350, caption="Image of a math equation")
st.markdown(f"""
Ask questions about the math equation as follows:
- Extract the formula.
- What is the symbol right before Pi? What does it mean?
- Is this a famous formula? Does it have a name?
""")
prompt = """Follow the instructions. Surround math expressions with $. Use a table with a row for each instruction and its result.
INSTRUCTIONS:
- Extract the formula.
- What is the symbol right before Pi? What does it mean?
- Is this a famous formula? Does it have a name?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
math_image_description = st.button("Generate answers", key="math_image_description")
with tab1:
if math_image_description and prompt:
with st.spinner("Generating answers for formula using Gemini..."):
response = get_gemini_vision_response(multimodal_model, [math_image_img, prompt])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt)
EOF
アプリをローカルでテストしたので、このアプリを Google Cloud 上の Cloud Run にデプロイして、他のユーザーが利用できるようにします。Cloud Run は、Google のスケーラブルなインフラストラクチャを基盤にアプケーション コンテナを実行できるマネージド コンピューティング プラットフォームです。