Gemini 是 Google 開發的生成式 AI 模型系列,專為多模態用途而設計。Gemini API 提供多種適合特定用途的模型。Gemini Pro 模型功能強大,回覆準確率和效能皆極為優異;Gemini Flash 是多模態模型,不僅效能更佳,延遲時間也極短;Gemini Flash-lite 模型則經過最佳化調整,延遲時間短且成本效益高。如要進一步瞭解這些模型變化版本,請參閱說明文件。
在 Google Cloud 中,Vertex AI Gemini API 提供統一的 Gemini 模型互動介面,支援多模態提示詞輸入 (包括音訊、圖像、影片、文字),並能輸出文字、圖像和音訊等內容。Imagen 模型則可根據文字生成圖像。
您可以透過機器學習 (ML) 平台 Vertex AI 訓練及部署 ML 模型和 AI 應用程式,以及將自訂後的大型語言模型 (LLM) 運用於 AI 輔助應用程式。Vertex AI 可讓您自訂 Gemini、完全掌控資料,並透過更多 Google Cloud 功能保障企業安全性與隱私權,以及強化資料治理與法規遵循機制。如要進一瞭解 Vertex AI,請參閱本實驗室結尾的「後續步驟」。
在本實驗室中,您將透過 Vertex AI SDK for Python 呼叫 Vertex AI Gemini API。
目標
本實驗室將說明如何執行下列工作:
運用 Streamlit 框架開發 Python 應用程式。
安裝 Vertex AI SDK for Python。
使用 Vertex AI Gemini API 編寫程式碼,用來與 Gemini 模型 (gemini-2.0-flash) 互動。
cat > ~/gemini-app/app_tab1.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel
from response_utils import *
import logging
# create the model prompt based on user input.
def generate_prompt():
# Story character input
character_name = st.text_input("Enter character name: \n\n",key="character_name",value="Mittens")
character_type = st.text_input("What type of character is it? \n\n",key="character_type",value="Cat")
character_persona = st.text_input("What personality does the character have? \n\n",
key="character_persona",value="Mitten is a very friendly cat.")
character_location = st.text_input("Where does the character live? \n\n",key="character_location",value="Andromeda Galaxy")
# Story length and premise
length_of_story = st.radio("Select the length of the story: \n\n",["Short","Long"],key="length_of_story",horizontal=True)
story_premise = st.multiselect("What is the story premise? (can select multiple) \n\n",["Love","Adventure","Mystery","Horror","Comedy","Sci-Fi","Fantasy","Thriller"],key="story_premise",default=["Love","Adventure"])
creative_control = st.radio("Select the creativity level: \n\n",["Low","High"],key="creative_control",horizontal=True)
if creative_control == "Low":
temperature = 0.30
else:
temperature = 0.95
prompt = f"""Write a {length_of_story} story based on the following premise: \n
character_name: {character_name} \n
character_type: {character_type} \n
character_persona: {character_persona} \n
character_location: {character_location} \n
story_premise: {",".join(story_premise)} \n
If the story is "short", then make sure to have 5 chapters or else if it is "long" then 10 chapters.
Important point is that each chapter should be generated based on the premise given above.
First start by giving the book introduction, chapter introductions and then each chapter. It should also have a proper ending.
The book should have a prologue and an epilogue.
"""
return temperature, prompt
# function to render the story tab, and call the model, and display the model prompt and response.
def render_story_tab (text_model: GenerativeModel):
st.subheader("Generate a story")
temperature, prompt = generate_prompt()
config = {
"temperature": temperature,
"max_output_tokens": 2048,
}
generate_t2t = st.button("Generate my story", key="generate_t2t")
if generate_t2t and prompt:
# st.write(prompt)
with st.spinner("Generating your story using Gemini..."):
first_tab1, first_tab2 = st.tabs(["Story response", "Prompt"])
with first_tab1:
response = get_gemini_text_response(text_model, prompt, generation_config=config)
if response:
st.write("Your story:")
st.write(response)
logging.info(response)
with first_tab2:
st.text(prompt)
EOF
cat > ~/gemini-app/app_tab2.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel
from response_utils import *
import logging
# create the model prompt based on user input.
def generate_prompt():
product_name = st.text_input("What is the name of the product? \n\n",key="product_name",value="ZomZoo")
product_category = st.radio("Select your product category: \n\n",["Clothing","Electronics","Food","Health & Beauty","Home & Garden"],key="product_category",horizontal=True)
st.write("Select your target audience: ")
target_audience_age = st.radio("Target age: \n\n",["18-24","25-34","35-44","45-54","55-64","65+"],key="target_audience_age",horizontal=True)
# target_audience_gender = st.radio("Target gender: \n\n",["male","female","trans","non-binary","others"],key="target_audience_gender",horizontal=True)
target_audience_location = st.radio("Target location: \n\n",["Urban", "Suburban","Rural"],key="target_audience_location",horizontal=True)
st.write("Select your marketing campaign goal: ")
campaign_goal = st.multiselect("Select your marketing campaign goal: \n\n",["Increase brand awareness","Generate leads","Drive sales","Improve brand sentiment"],key="campaign_goal",default=["Increase brand awareness","Generate leads"])
if campaign_goal is None:
campaign_goal = ["Increase brand awareness","Generate leads"]
brand_voice = st.radio("Select your brand voice: \n\n",["Formal","Informal","Serious","Humorous"],key="brand_voice",horizontal=True)
estimated_budget = st.radio("Select your estimated budget ($): \n\n",["1,000-5,000","5,000-10,000","10,000-20,000","20,000+"],key="estimated_budget",horizontal=True)
prompt = f"""Generate a marketing campaign for {product_name}, a {product_category} designed for the age group: {target_audience_age}.
The target location is this: {target_audience_location}.
Aim to primarily achieve {campaign_goal}.
Emphasize the product's unique selling proposition while using a {brand_voice} tone of voice.
Allocate the total budget of {estimated_budget}.
With these inputs, make sure to follow following guidelines and generate the marketing campaign with proper headlines: \n
- Briefly describe the company, its values, mission, and target audience.
- Highlight any relevant brand guidelines or messaging frameworks.
- Provide a concise overview of the campaign's objectives and goals.
- Briefly explain the product or service being promoted.
- Define your ideal customer with clear demographics, psychographics, and behavioral insights.
- Understand their needs, wants, motivations, and pain points.
- Clearly articulate the desired outcomes for the campaign.
- Use SMART goals (Specific, Measurable, Achievable, Relevant, and Time-bound) for clarity.
- Define key performance indicators (KPIs) to track progress and success.
- Specify the primary and secondary goals of the campaign.
- Examples include brand awareness, lead generation, sales growth, or website traffic.
- Clearly define what differentiates your product or service from competitors.
- Emphasize the value proposition and unique benefits offered to the target audience.
- Define the desired tone and personality of the campaign messaging.
- Identify the specific channels you will use to reach your target audience.
- Clearly state the desired action you want the audience to take.
- Make it specific, compelling, and easy to understand.
- Identify and analyze your key competitors in the market.
- Understand their strengths and weaknesses, target audience, and marketing strategies.
- Develop a differentiation strategy to stand out from the competition.
- Define how you will track the success of the campaign.
- Use relevant KPIs to measure performance and return on investment (ROI).
Provide bullet points and headlines for the marketing campaign. Do not produce any empty lines. Be very succinct and to the point.
"""
return prompt
# function to render the story tab, and call the model, and display the model prompt and response.
def render_mktg_campaign_tab (text_model: GenerativeModel):
st.subheader("Generate a marketing campaign")
prompt = generate_prompt()
config = {
"temperature": 0.8,
"max_output_tokens": 2048,
}
generate_t2m = st.button("Generate campaign", key="generate_t2m")
if generate_t2m and prompt:
# st.write(prompt)
with st.spinner("Generating a marketing campaign using Gemini..."):
first_tab1, first_tab2 = st.tabs(["Campaign response", "Prompt"])
with first_tab1:
response = get_gemini_text_response(text_model, prompt, generation_config=config)
if response:
st.write("Marketing campaign:")
st.write(response)
logging.info(response)
with first_tab2:
st.text(prompt)
EOF
cat > ~/gemini-app/app_tab3.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel, Part
from response_utils import *
import logging
# render the Video Playground tab with multiple child tabs
def render_video_playground_tab(multimodal_model: GenerativeModel):
video_desc, video_tags, video_highlights, video_geoloc = st.tabs(["Video description", "Video tags", "Video highlights", "Video geolocation"])
with video_desc:
video_desc_uri = "gs://cloud-training/OCBL447/gemini-app/videos/mediterraneansea.mp4"
video_desc_url = "https://storage.googleapis.com/"+video_desc_uri.split("gs://")[1]
video_desc_vid = Part.from_uri(video_desc_uri, mime_type="video/mp4")
st.video(video_desc_url)
st.write("Generate a description of the video.")
prompt = """Describe what is happening in the video and answer the following questions: \n
- What am I looking at?
- Where should I go to see it?
- What are other top 5 places in the world that look like this?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_desc_description = st.button("Generate video description", key="video_desc_description")
with tab1:
if video_desc_description and prompt:
with st.spinner("Generating video description"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_desc_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat >> ~/gemini-app/app.py <<EOF
from app_tab3 import render_video_playground_tab
with tab3:
render_video_playground_tab(multimodal_model)
EOF
測試應用程式 -「Video Playground」分頁
請重新整理應用程式的瀏覽器分頁或視窗,以重新載入及查看更新後的應用程式 UI。
依序點選「Video Playground」和「Video description」。
分頁會顯示某地點的影片。點選即可播放影片。
等到影片播放完畢後,再繼續進行下一步。
點選「Generate video description」。
如果發生以下錯誤:google.api_core.exceptions.FailedPrecondition: 400 Service agents are being provisioned (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents). Service agents are needed to read the Cloud Storage file provided. So please try again in a few minutes.,請稍候幾分鐘,然後再次點選「Generate video description」。
查看模型的回覆。
這當中包含片中地點說明,以及其他 5 個類似地點。
點選「Check my progress」,確認目標已達成。
已開發應用程式「Video Playground」和「Video description」分頁。
cat >> ~/gemini-app/app_tab3.py <<EOF
with video_tags:
video_tags_uri = "gs://cloud-training/OCBL447/gemini-app/videos/photography.mp4"
video_tags_url = "https://storage.googleapis.com/"+video_tags_uri.split("gs://")[1]
video_tags_vid = Part.from_uri(video_tags_uri, mime_type="video/mp4")
st.video(video_tags_url)
st.write("Generate tags for the video.")
prompt = """Answer the following questions using the video only:
1. What is in the video?
2. What objects are in the video?
3. What is the action in the video?
4. Provide 5 best tags for this video?
Write the answer in table format with the questions and answers in columns.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_tags_desc = st.button("Generate video tags", key="video_tags_desc")
with tab1:
if video_tags_desc and prompt:
with st.spinner("Generating video tags"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_tags_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat >> ~/gemini-app/app_tab3.py <<EOF
with video_highlights:
video_highlights_uri = "gs://cloud-training/OCBL447/gemini-app/videos/pixel8.mp4"
video_highlights_url = "https://storage.googleapis.com/"+video_highlights_uri.split("gs://")[1]
video_highlights_vid = Part.from_uri(video_highlights_uri, mime_type="video/mp4")
st.video(video_highlights_url)
st.write("Generate highlights for the video.")
prompt = """Answer the following questions using the video only:
What is the profession of the girl in this video?
Which features of the phone are highlighted here?
Summarize the video in one paragraph.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_highlights_description = st.button("Generate video highlights", key="video_highlights_description")
with tab1:
if video_highlights_description and prompt:
with st.spinner("Generating video highlights"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_highlights_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat >> ~/gemini-app/app_tab3.py <<EOF
with video_geoloc:
video_geolocation_uri = "gs://cloud-training/OCBL447/gemini-app/videos/bus.mp4"
video_geolocation_url = "https://storage.googleapis.com/"+video_geolocation_uri.split("gs://")[1]
video_geolocation_vid = Part.from_uri(video_geolocation_uri, mime_type="video/mp4")
st.video(video_geolocation_url)
st.markdown("""Answer the following questions from the video:
- What is this video about?
- How do you know which city it is?
- What street is this?
- What is the nearest intersection?
""")
prompt = """Answer the following questions using the video only:
What is this video about?
How do you know which city it is?
What street is this?
What is the nearest intersection?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_geolocation_description = st.button("Generate", key="video_geolocation_description")
with tab1:
if video_geolocation_description and prompt:
with st.spinner("Generating location information"):
response = get_gemini_vision_response(multimodal_model, [prompt, video_geolocation_vid])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.write(prompt,"\n","{video_data}")
EOF
cat > ~/gemini-app/app_tab4.py <<EOF
import streamlit as st
from vertexai.preview.generative_models import GenerativeModel, Part
from response_utils import *
import logging
# render the Image Playground tab with multiple child tabs
def render_image_playground_tab(multimodal_model: GenerativeModel):
recommendations, screens, diagrams, equations = st.tabs(["Furniture recommendation", "Oven instructions", "ER diagrams", "Math reasoning"])
with recommendations:
room_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/living_room.jpeg"
chair_1_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair1.jpeg"
chair_2_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair2.jpeg"
chair_3_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair3.jpeg"
chair_4_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/chair4.jpeg"
room_image_url = "https://storage.googleapis.com/"+room_image_uri.split("gs://")[1]
chair_1_image_url = "https://storage.googleapis.com/"+chair_1_image_uri.split("gs://")[1]
chair_2_image_url = "https://storage.googleapis.com/"+chair_2_image_uri.split("gs://")[1]
chair_3_image_url = "https://storage.googleapis.com/"+chair_3_image_uri.split("gs://")[1]
chair_4_image_url = "https://storage.googleapis.com/"+chair_4_image_uri.split("gs://")[1]
room_image = Part.from_uri(room_image_uri, mime_type="image/jpeg")
chair_1_image = Part.from_uri(chair_1_image_uri,mime_type="image/jpeg")
chair_2_image = Part.from_uri(chair_2_image_uri,mime_type="image/jpeg")
chair_3_image = Part.from_uri(chair_3_image_uri,mime_type="image/jpeg")
chair_4_image = Part.from_uri(chair_4_image_uri,mime_type="image/jpeg")
st.image(room_image_url,width=350, caption="Image of a living room")
st.image([chair_1_image_url,chair_2_image_url,chair_3_image_url,chair_4_image_url],width=200, caption=["Chair 1","Chair 2","Chair 3","Chair 4"])
st.write("Our expectation: Recommend a chair that would complement the given image of a living room.")
prompt_list = ["Consider the following chairs:",
"chair 1:", chair_1_image,
"chair 2:", chair_2_image,
"chair 3:", chair_3_image, "and",
"chair 4:", chair_4_image, "\n"
"For each chair, explain why it would be suitable or not suitable for the following room:",
room_image,
"Only recommend for the room provided and not other rooms. Provide your recommendation in a table format with chair name and reason as columns.",
]
tab1, tab2 = st.tabs(["Response", "Prompt"])
generate_image_description = st.button("Generate recommendation", key="generate_image_description")
with tab1:
if generate_image_description and prompt_list:
with st.spinner("Generating recommendation using Gemini..."):
response = get_gemini_vision_response(multimodal_model, prompt_list)
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt_list)
EOF
如果發生以下錯誤:google.api_core.exceptions.FailedPrecondition: 400 Service agents are being provisioned (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents). Service agents are needed to read the Cloud Storage file provided. So please try again in a few minutes.,請稍候幾分鐘,然後再次點選「Generate recommendation」。
查看模型的回覆。
模型會依提示詞的要求以表格形式提供回覆,推薦四張椅子中的其中兩張,並附上理由。
點選「Check my progress」,確認目標已達成。
已開發應用程式「Image Playground」和「Furniture recommendation」分頁。
cat >> ~/gemini-app/app_tab4.py <<EOF
with screens:
oven_screen_uri = "gs://cloud-training/OCBL447/gemini-app/images/oven.jpg"
oven_screen_url = "https://storage.googleapis.com/"+oven_screen_uri.split("gs://")[1]
oven_screen_img = Part.from_uri(oven_screen_uri, mime_type="image/jpeg")
st.image(oven_screen_url, width=350, caption="Image of an oven control panel")
st.write("Provide instructions for resetting the clock on this appliance in English")
prompt = """How can I reset the clock on this appliance? Provide the instructions in English.
If instructions include buttons, also explain where those buttons are physically located.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
generate_instructions_description = st.button("Generate instructions", key="generate_instructions_description")
with tab1:
if generate_instructions_description and prompt:
with st.spinner("Generating instructions using Gemini..."):
response = get_gemini_vision_response(multimodal_model, [oven_screen_img, prompt])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt+"\n"+"input_image")
EOF
cat >> ~/gemini-app/app_tab4.py <<EOF
with diagrams:
er_diag_uri = "gs://cloud-training/OCBL447/gemini-app/images/er.png"
er_diag_url = "https://storage.googleapis.com/"+er_diag_uri.split("gs://")[1]
er_diag_img = Part.from_uri(er_diag_uri,mime_type="image/png")
st.image(er_diag_url, width=350, caption="Image of an ER diagram")
st.write("Document the entities and relationships in this ER diagram.")
prompt = """Document the entities and relationships in this ER diagram."""
tab1, tab2 = st.tabs(["Response", "Prompt"])
er_diag_img_description = st.button("Generate documentation", key="er_diag_img_description")
with tab1:
if er_diag_img_description and prompt:
with st.spinner("Generating..."):
response = get_gemini_vision_response(multimodal_model,[er_diag_img,prompt])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt+"\n"+"input_image")
EOF
cat >> ~/gemini-app/app_tab4.py <<EOF
with equations:
math_image_uri = "gs://cloud-training/OCBL447/gemini-app/images/math_eqn.jpg"
math_image_url = "https://storage.googleapis.com/"+math_image_uri.split("gs://")[1]
math_image_img = Part.from_uri(math_image_uri,mime_type="image/jpeg")
st.image(math_image_url,width=350, caption="Image of a math equation")
st.markdown(f"""
Ask questions about the math equation as follows:
- Extract the formula.
- What is the symbol right before Pi? What does it mean?
- Is this a famous formula? Does it have a name?
""")
prompt = """Follow the instructions. Surround math expressions with $. Use a table with a row for each instruction and its result.
INSTRUCTIONS:
- Extract the formula.
- What is the symbol right before Pi? What does it mean?
- Is this a famous formula? Does it have a name?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
math_image_description = st.button("Generate answers", key="math_image_description")
with tab1:
if math_image_description and prompt:
with st.spinner("Generating answers for formula using Gemini..."):
response = get_gemini_vision_response(multimodal_model, [math_image_img, prompt])
st.markdown(response)
logging.info(response)
with tab2:
st.write("Prompt used:")
st.text(prompt)
EOF
SERVICE_NAME='gemini-app-playground' # Name of your Cloud Run service.
AR_REPO='gemini-app-repo' # Name of your repository in Artifact Registry that stores your application container image.
echo "SERVICE_NAME=${SERVICE_NAME}"
echo "AR_REPO=${AR_REPO}"