Opiniones sobre Analiza las opiniones de los clientes con Gemini utilizando SQL
Cargando…
No se encontraron resultados.

    Opiniones sobre Analiza las opiniones de los clientes con Gemini utilizando SQL

    518 opiniones

    Carlos J. · Se revisó hace 2 meses

    good labs

    Uday R. · Se revisó hace 2 meses

    William M. · Se revisó hace 2 meses

    good

    Shubhajit G. · Se revisó hace 2 meses

    Alireza A. · Se revisó hace 2 meses

    SEONGHYEON K. · Se revisó hace 2 meses

    LEQUELLEC O. · Se revisó hace 2 meses

    Luismi M. · Se revisó hace 2 meses

    Pawan K. · Se revisó hace 2 meses

    Shawn G. · Se revisó hace 2 meses

    Harish L. · Se revisó hace 2 meses

    SAhil K. · Se revisó hace 2 meses

    Steven B. · Se revisó hace 2 meses

    Patrick J. · Se revisó hace 2 meses

    The llm failed to produce valid json. CREATE OR REPLACE TABLE `gemini_demo.customer_reviews_cs_response` AS ( SELECT ml_generate_text_llm_result, social_media_source, review_text, customer_id, location_id, review_datetime FROM ML.GENERATE_TEXT( MODEL `gemini_demo.gemini_pro`, ( SELECT social_media_source, customer_id, location_id, review_text, review_datetime, CONCAT( 'How would you respond to this customer review? If the customer says the coffee is weak or burnt, respond stating "thank you for the review we will provide your response to the location that you did not like the coffee and it could be improved." Or if the review states the service is bad, respond to the customer stating, "the location they visited has been notfied and we are taking action to improve our service at that location." From the customer reviews provide actions that the location can take to improve. The response and the actions should be simple, and to the point. Do not include any extraneous or special characters in your response. Answer in JSON format with two keys: Response, and Actions. Response should be a string. Actions should be a string.', review_text) AS prompt FROM `gemini_demo.customer_reviews` WHERE customer_id = 8844 ), STRUCT( 0.2 AS temperature, TRUE AS flatten_json_output))); returned ```json { "Response": "Thank you for the review. We are sorry to hear that you had a negative experience at our coffee truck. We have notified the location that you visited and we are taking action to improve our service and the quality of our coffee and pastries. We appreciate your feedback and we will use it to make our business better.", "Actions": "The location has been notified of the customer's feedback and is taking the following actions to improve:\n\n* Staff will be retrained on customer service to ensure that all customers receive prompt and courteous service.\n* The coffee brewing process -- yes i did expand the cell -- This caused the formatting query to fail, Action was null.

    Jozsef C. · Se revisó hace 2 meses

    ME24B023 L. · Se revisó hace 2 meses

    Md Iftekhar . · Se revisó hace 2 meses

    Zhan C. · Se revisó hace 2 meses

    Nicola G. · Se revisó hace 2 meses

    Julien M. · Se revisó hace 2 meses

    Cédric M. · Se revisó hace 2 meses

    Sabrine A. · Se revisó hace 2 meses

    Vincent D. · Se revisó hace 2 meses

    Arnaud M. · Se revisó hace 2 meses

    Yomna M. · Se revisó hace 2 meses

    No garantizamos que las opiniones publicadas provengan de consumidores que hayan comprado o utilizado los productos. Google no verifica las opiniones.