参加 ログイン

PRAKASH RAVI

メンバー加入日: 2019

シルバーリーグ

2900 ポイント
Implement Load Balancing on Compute Engine のバッジ Implement Load Balancing on Compute Engine Earned 9月 30, 2020 EDT
Intro to ML: Image Processing のバッジ Intro to ML: Image Processing Earned 10月 25, 2019 EDT
機械学習API のバッジ 機械学習API Earned 10月 25, 2019 EDT
Intermediate ML: TensorFlow on Google Cloud のバッジ Intermediate ML: TensorFlow on Google Cloud Earned 10月 23, 2019 EDT
BigQuery for Machine Learning のバッジ BigQuery for Machine Learning Earned 10月 7, 2019 EDT
Baseline: Data, ML, AI のバッジ Baseline: Data, ML, AI Earned 10月 5, 2019 EDT
Google Cloud Essentials のバッジ Google Cloud Essentials Earned 10月 2, 2019 EDT
Cloud Architecture のバッジ Cloud Architecture Earned 8月 30, 2019 EDT
Kubernetes in Google Cloud のバッジ Kubernetes in Google Cloud Earned 8月 30, 2019 EDT
Baseline: Infrastructure のバッジ Baseline: Infrastructure Earned 8月 30, 2019 EDT

Implement Load Balancing on Compute Engine スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

大規模な計算処理能力を活用してパターンを認識し、画像を解釈することは、自動運転から顔認識まで、さまざまな用途における AI の基盤技術です。Google Cloud Platform は、API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供しています。GCP にはさまざまな API があるため、機械学習に関するほぼすべてのタスクに対応することができます。この入門クエストでは、画像処理に用いられる機械学習の実践的な演習を行います。ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、画像内のテキストを抽出、分析、翻訳したりすることができます。

詳細

機械学習はもっとも迅速に成長しているテクノロジーの分野です。Google Cloud Platformは、その成長に一役かっています。APIのホストを使うことにより、GCPにはツールがあります。この上級レベルのクエストでは、「Implementing an AI Chatbot with Dialogflow」や「Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API」と同様に機械学習APIについてハンズオンで演習ができます。

詳細

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

詳細

機械学習を学んで実践し、SQL だけを使用して、数時間ではなく数分でモデルをビルドしたいとお考えの場合、BigQuery の新機能である BigQuery ML を使用すれば、最小限のコーディングで機械学習モデルの作成、トレーニング、評価、予測が可能になります。この一連のラボでは、さまざまなモデルタイプを試して、優れたモデルを作成する方法を学習します。

詳細

ビッグデータ、機械学習、AIはコンピューター業界ではホットな話題です。しかし、これらの分野は専門的で、入門レベルでも難しいことがあります。Google Cloud は使いやすく、Qwiklabs のクエストでは入門レベルをカバーしているため、Big Query、Cloud Speech API、AI Platform などの最初のステップを開始することができます。主なコンセプトは 1 分間のビデオで説明されています。

詳細

この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。

詳細

この基礎レベルの クエスト は他の Qwiklabs 製品の中でもユニークです。これらのラボは、Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックやサービスについて、 IT プロフェッショナルがハンズオンで演習するために作成されました。 IAM からネットワーキング、Kubernetes engine のデプロイまで、Goodle Cloud の知識が試される特定のラボで構成されています。これらのラボでの演習は スキルや能力の向上に役立ちますが、試験ガイドやその他の対策資料も参照することをお勧めします。

詳細

Kubernetes は最もポピュラーなコンテナ オーケストレーションのシステムで、Google Kubernetes Engine は Google Cloud でのデプロイに対応できるようデザインされています。この上級レベルのラボでは、ハンズオンで Docker イメージやコンテナ、およびデプロイができる演習があります。お客様独自のワークフローに合う、コンテナ オーケストレーション統合に必要な実践的スキルを学びます。ハンズオンラボでスキルや知識を試したいですか?このクエスト修了後に、 Deploy to Kubernetes in Google Cloud クエストの最後にあるチャレンジラボを完了すると、Google Cloud 限定デジタルバッジを獲得できます。

詳細

Google Cloud Essentials よりレベルの高いハンズオンラボでの実践を求めている初心者のクラウド デベロッパーであるなら、このクエストをおすすめします。 Cloud Storage や、Stackdriver および Cloud Functions などの主要なアプリケーション サービスに関連するラボを通して、実践的な経験を積むことが可能です。 このクエストでは、すべての Google Cloud イニシアチブに応用できる有益なスキルを身に付けられます。主なコンセプトは 1 分間のビデオで説明されています。

詳細