Moreno Velez Carlos Andres
メンバー加入日: 2020
メンバー加入日: 2020
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
機械学習を学んで実践し、SQL だけを使用して、数時間ではなく数分でモデルをビルドしたいとお考えの場合、BigQuery の新機能である BigQuery ML を使用すれば、最小限のコーディングで機械学習モデルの作成、トレーニング、評価、予測が可能になります。この一連のラボでは、さまざまなモデルタイプを試して、優れたモデルを作成する方法を学習します。
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
マーケティングデータを洞察し、ダッシュボード構築はいかがでしょう?大規模な分析とモデル構築のために、すべてのデータを1か所にまとめましょう。クエリ方法を学び、また BigQuery を使用しながら、再現性があり、拡張可能、そして価値ある洞察を データ化します。 BigQuery は、Google が完全管理しており、 NoOpsで、低コストの分析データベースです。 BigQuery を使用すれば、管理すべき インフラストラクチャを持たずに、またはデータベース管理者を必要とすることなく、何テラバイトものデータをクエリすることができます。 BigQuery は SQL を使用し、従量制モデルを利用できます。 BigQuery を使用すれば、データ分析に集中でき、意味ある洞察を見い出だすことができます。
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
データ ウェアハウスの構築または最適化を検討している場合は、BigQuery を使ったデータの抽出、変換、Google Cloud への読み込みに関するおすすめの方法を学びます。この一連のインタラクティブなラボでは、各種の大規模な BigQuery 一般公開データセットを使って独自のデータ ウェアハウスを作成、最適化します。BigQuery は、Google が低料金で提供する NoOps のフルマネージド分析データベースです。インフラストラクチャを所有して管理したり、データベース管理者を配置したりすることなく、テラバイト単位の大規模なデータでクエリを実行できます。また、SQL が採用されており、従量課金制モデルでご利用いただけます。このような特徴を活かし、お客様は有用な情報を得るためのデータ分析に専念できます。
ビッグデータ、機械学習、AIはコンピューター業界ではホットな話題です。しかし、これらの分野は専門的で、入門レベルでも難しいことがあります。Google Cloud は使いやすく、Qwiklabs のクエストでは入門レベルをカバーしているため、Big Query、Cloud Speech API、AI Platform などの最初のステップを開始することができます。主なコンセプトは 1 分間のビデオで説明されています。
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。