Akshit Keoliya
Miembro desde 2019
Miembro desde 2019
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
Completa los cursos Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI para obtener una insignia de habilidad. Aprueba el cuestionario final para demostrar que entiendes los conceptos básicos sobre la IA generativa. Una insignia de habilidad es una insignia digital que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma. Para compartir tu insignia de habilidad, establece tu perfil como público y agrega la insignia a tu perfil de redes sociales.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Welcome to the serverless Pet Theory game! Click "Join this Game". To modify your player name or avatar, go to your My Account page at https://google.qwiklabs.com. Points are earned by completing the steps in the lab.... and bonus points are earned for speed! Be sure to complete each lab by selecting the END option to get the maximum points. Please respect the GCP resource quotas that have been allocated. Otherwise, you'll waste your Game time and gain fewer points.
Welcome to Diwali Speedrun! Here's some more fun for you this Diwali. Learn the ins and outs of the Google assistant with these interesting game labs. Complete the game labs one by one. The faster you complete the lab objectives, the higher your score. You can take each lab up to 5 times. Good luck!
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
En esta Quest de nivel introductorio, se enseña a los desarrolladores de aplicaciones de qué manera el ecosistema de Google Cloud los puede ayudar a compilar aplicaciones nativas de la nube que sean seguras, inteligentes y escalables. Aprenderá a desarrollar y escalar aplicaciones sin tener que configurar una infraestructura, a ejecutar análisis de datos y obtener estadísticas a partir de ellos, y a desarrollar con API de AA previamente entrenadas para aprovechar eventos de aprendizaje automático (si no es experto en ese tipo de tecnología).También experimentará con la integración continua entre varios servicios de Google y API para crear aplicaciones inteligentes.
¿Quiere aprender a usar el aprendizaje automático, a familiarizarse con él y a compilar modelos en minutos, en lugar de pasar horas utilizando únicamente SQL? BigQuery Machine Learning es una nueva función de BigQuery en la que los analistas de datos pueden crear, entrenar, evaluar y predecir con modelos de aprendizaje automático y codificación mínima. En esta serie de labs, experimentará con diferentes tipos de modelos y aprenderá cuáles son las características de un buen modelo.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.
Usar la potencia de procesamiento a gran escala para reconocer patrones y "leer" imágenes es una de las tecnologías fundamentales de la IA, desde vehículos autónomos hasta reconocimiento facial. Google Cloud Platform proporciona velocidad y exactitud de primer nivel mediante sistemas que se pueden usar con tan solo llamar a API. Gracias a esos sistemas y una amplia variedad de otras API, GCP ofrece una herramienta para prácticamente cualquier trabajo de aprendizaje automático. En esta Quest introductoria, obtendrá experiencia práctica en el aprendizaje automático y su aplicación al procesamiento de imágenes. Logrará esto mediante labs que le permitirán etiquetar imágenes y detectar rostros y puntos de referencia, así como extraer, analizar y traducir texto de las imágenes.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest introductoria, adquirirá experiencia práctica con la aplicación del aprendizaje automático en el procesamiento del lenguaje. Para ello, realizará labs que le permitan extraer entidades de un texto y realizar análisis de opiniones y sintácticos, así como utilizar la API Speech to Text para realizar transcripciones.
Los macrodatos, el aprendizaje automático y la inteligencia artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Afortunadamente, GCP ofrece servicios fáciles de usar en estas áreas y Qwiklabs le proporciona esta Quest de nivel básico para que pueda dar sus primeros pasos con herramientas como BigQuery, API de Cloud Speech y Cloud ML Engine. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.