Akshit Keoliya
Date d'abonnement : 2019
Date d'abonnement : 2019
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Welcome to the serverless Pet Theory game! Click "Join this Game". To modify your player name or avatar, go to your My Account page at https://google.qwiklabs.com. Points are earned by completing the steps in the lab.... and bonus points are earned for speed! Be sure to complete each lab by selecting the END option to get the maximum points. Please respect the GCP resource quotas that have been allocated. Otherwise, you'll waste your Game time and gain fewer points.
Welcome to Diwali Speedrun! Here's some more fun for you this Diwali. Learn the ins and outs of the Google assistant with these interesting game labs. Complete the game labs one by one. The faster you complete the lab objectives, the higher your score. You can take each lab up to 5 times. Good luck!
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
Cette quête de niveau débutant montre aux développeurs d'applications comment l'écosystème de Google Cloud peut les aider à créer des applications cloud natives sécurisées, évolutives et intelligentes. Vous apprendrez à développer et à faire évoluer des applications sans configurer d’infrastructure, à exécuter des analyses de données, à obtenir des informations à partir de données, et à développer avec des API de ML pré-entraînées pour tirer parti du machine learning, même si vous n’êtes pas un expert en la matière. Vous découvrirez également l'intégration parfaite de divers services et API de Google dans le but de créer des applications intelligentes.
Vous voulez vous familiariser avec le machine learning et créer des modèles en quelques minutes grâce à SQL, pour ne plus y consacrer des heures ? BigQuery Machine Learning est une nouvelle fonctionnalité de BigQuery qui permet aux analystes de données de créer et d'entraîner des modèles de machine learning en vue de faire des prédictions, le tout avec un minimum de codage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API.
L'une des technologies de base de l'IA, que l'on retrouve des voitures autonomes à la reconnaissance faciale, repose sur l'utilisation de la puissance de calcul à grande échelle pour reconnaître des schémas et "lire" des images. La plate-forme Google Cloud offre une vitesse et une précision haut de gamme grâce à des systèmes qui peuvent être utilisés via de simples appels d'API. Doté d'une multitude d'API, GCP dispose d'un outil pour pratiquement toutes les tâches de machine learning. Cette quête de présentation vous permet de vous familiariser avec le machine learning appliqué au traitement des images. Au fil des ateliers, vous apprendrez à attribuer une étiquette aux images, à détecter les visages et les points de repère, ainsi qu'à extraire, analyser et traduire le texte dans les images.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP dispose d'un outil pour pratiquement toutes les tâches de machine learning. Cette quête de présentation vous permet de vous familiariser avec le machine learning sur des applications de traitement du langage. Au fil des ateliers, vous apprendrez à extraire des entités d'un texte, à analyser les sentiments et la syntaxe, et à utiliser l'API de reconnaissance vocale pour la transcription.
Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes récurrents de l'informatique, mais ces domaines sont spécialisés, et il est ardu de dénicher du matériel de référence. Heureusement, GCP fournit des services conviviaux dans ces domaines, et Qwiklabs vous y forme dans cette quête introductive. Ainsi, vous pourrez faire vos premiers pas avec des outils tels que BigQuery, l'API Cloud Speech et Cloud ML Engine. Des vidéos d'une minute résument les concepts clés de chaque atelier.