Hoe Zi-Onn
メンバー加入日: 2023
シルバーリーグ
10660 ポイント
メンバー加入日: 2023
このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャであるエンコーダ / デコーダ アーキテクチャの概要を説明します。エンコーダ / デコーダ アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するためのエンコーダ / デコーダ アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。
このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
この初級コースでは、Google Cloud のデータ分析ワークフローについてと、データを探索、分析、可視化し、得られた情報をステークホルダーと共有するために使用できるツールについて学びます。ケーススタディを取り上げながら、ハンズオンラボ、講義、理解度チェック、デモを通じて、元データセットをクリーンなデータに、さらには効果的な可視化やダッシュボードに生まれ変わらせる方法を示します。このコースは、Google Cloud で成果を上げる方法を知りたいと思っているデータ実務担当者にも、さらなるキャリアアップを目指している方にも、専門知識を深める入口として最適な内容になっています。データ分析業務を実際に行っている、あるいはデータ分析を利用している大多数の人に有益です。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
「Prompt Design in Vertex AI」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 2 番目のコースでは、ストレージ モデルの実装、さまざまなアプリケーション マネージド サービス オプション、GoogleCloudでのセキュリティ管理について説明します。
Google Cloud Computing Foundations コースでは、クラウド コンピューティングの知識または経験がほとんどあるいはまったくない受講者に、 クラウドの基礎、ビッグデータ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのように役立つかについて詳しく説明します。 最初にクラウド コンピューティングの概要を確認してから、クラウド·コンピューティング·インフラストラクチャと、ビッグデータおよび機械学習の 2 つの分野を詳しく見ていきます。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、機械学習に関連するコンセプトを明確に説明したり、 いくつかの実践的スキルを実証したりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。