montini angelo
メンバー加入日: 2024
ダイヤモンド リーグ
56935 ポイント
メンバー加入日: 2024
生成 AI を使用してユーザーがより快適に検索できるようにすることで、ウェブサイトのナビゲーション エクスペリエンスを向上する。このコースでは、ウェブサイトに含まれるコンテンツをユーザーが見つけやすくするために、Vertex AI Search を使用して生成検索機能を提供する方法を学習します。また、ウェブサイト編集者として、生成 AI による提案を利用して短時間で効率的にコンテンツの翻訳や改善を行う方法も学びます。
このコースでは、Google のポータブル UI ツールキットである Flutter を使用してアプリを開発し、そのアプリを Google の生成 AI モデル ファミリーである Gemini と統合する方法について学びます。また、AI エージェントとアプリケーションを構築、管理するための Google のプラットフォームである Vertex AI Agent Builder も使用します。
このコースでは、AI のプライバシーと安全性に関する重要なトピックを紹介します。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して AI のプライバシーと安全性の推奨プラクティスを実装するための実践的な方法とツールを検証します。
このコースでは、AI の解釈可能性と透明性のコンセプトを紹介します。デベロッパーとエンジニアにとって AI の透明性が重要であることについて説明します。データと AI モデルの両方で解釈可能性と透明性を達成できる実践的な方法とツールを検証します。
このコースでは、責任ある AI および AI に関する原則のコンセプトを紹介します。AI / ML の実践における公平性とバイアスを特定し、バイアスを軽減するための実践的な手法を取り扱います。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して責任ある AI のベスト プラクティスを実装するための実践的な方法とツールを検証します。
Inspect Rich Documents with Gemini Multimodality and Multimodal RAG スキルバッジを獲得できる中級コースを修了すると、次のスキルを実証できます。 Gemini を使用したマルチモダリティにより、マルチモーダル プロンプトを使用してテキストと視覚データから情報を抽出し、動画の説明を生成して、 動画の範囲を超えた追加情報を取得する。Gemini を使用したマルチモーダル検索拡張生成(RAG)により、テキストと画像を含むドキュメントのメタデータを作成し、関連するすべてのテキスト チャンクの取得して、 引用を出力する。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、ネットワークで共有しましょう。
The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.
This course equips app developers with the skills to integrate generative AI features into their applications using Firebase Genkit. You learn how to leverage Firebase Genkit's capabilities for backend flows and seamless model execution, all using Node.js. The course guides you through the entire process, from prototyping to production, providing a pattern for building next-generation AI-powered applications.
Complete the intermediate Explore Generative AI with the Gemini API in Vertex AI skill badge to demonstrate skills in the following: text generation, image and video analysis for enhanced content creation, and applying function calling techniques within the Gemini API. Discover how to leverage sophisticated Gemini techniques, explore multimodal content generation, and expand the capabilities of your AI-powered projects. Skill badges validate your practical knowledge on specific products through hands-on labs and challenge assessments. Earn a badge by completing a course or jump straight into the challenge lab to get your badge today. Badges prove your proficiency, enhance your professional profile, and ultimately lead to increased career opportunities. Visit your profile to track badges you’ve earned.
「Develop Serverless Apps with Firebase」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。
このコースでは、生成 AI を活用した Google Cloud のコラボレーター、Gemini が、デベロッパーのアプリケーション構築にどのように役立つかについて学びます。コードの説明、Google Cloud サービスの提案、アプリケーションのコード生成を Gemini に指示する方法について学びます。ハンズオンラボを使用して、Gemini でアプリケーション開発ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。
「Derive Insights from BigQuery Data」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの 習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。
Earn a skill badge by completing the Create a Streaming Data Lake on Cloud Storage course, where you use Pub/Sub, Dataflow, and Cloud Storage together to create a streaming data lake on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
このコースでは、データを AI 活用へつなげるためのワークフローに役立つ AI 搭載の機能スイート、Gemini in BigQuery について説明します。この機能スイートには、データの探索と準備、コード生成とトラブルシューティング、ワークフローの検出と可視化などが含まれます。このコースでは、概念の説明、実際のユースケース、ハンズオンラボを通じて、データ実務者が生産性を高め、開発パイプラインを迅速化できるよう支援します。
推論のための BigQuery ML の概要、データ アナリストがこれを使用すべき理由、そのユースケース、サポートされる ML モデルについて学びます。また、これらの ML モデルを BigQuery で作成し、管理する方法も学びます。
このコースでは、BigQuery の生成 AI タスクで AI / ML モデルを使用する方法をご紹介します。顧客管理を含む実際のユースケースを通して、Gemini モデルを使用してビジネス上の問題を解決するワークフローを学びます。また、理解を深めるために、このコースでは SQL クエリと Python ノートブックの両方を使用したコーディング ソリューションの詳細な手順も提供しています。
このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、顧客データの分析や商品売上の予測にどのように役立つかについて学びます。また、BigQuery で顧客データを使用して、新規顧客を特定、分類、発見する方法も学習します。ハンズオンラボでは、Gemini でデータ分析と ML のワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you will learn how the API derrives sentiment from text. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
生成 AI アプリケーションは、大規模言語モデル(LLM)の発明以前にはほぼ不可能であった、新しいユーザー エクスペリエンスを生み出すことができます。アプリケーション デベロッパーが Google Cloud 上で生成 AI を活用し、魅力的で強力なアプリを構築するにはどうすればよいでしょうか? このコースでは、生成 AI アプリケーションについて学びます。また、プロンプト設計と検索拡張生成(RAG)を使用して、LLM を活用した強力なアプリケーションを構築する方法についても学びます。さらに、生成 AI アプリケーションで使用できるプロダクション レディなアーキテクチャについて学び、LLM と RAG ベースのチャット アプリケーションを構築します。
Engineer Data for Predictive Modeling with BigQuery ML スキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、Cloud Storage、Dataflow、 BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、BigQuery ML を使用した ML モデルの構築、 Cloud Composer を使用した複数ロケーション間でのデータのコピーに関するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、インタラクティブなハンズオン環境での知識の応用力を証明するものです。 スキルバッジ コースと最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。
このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。
This course is designed for data analysts who want to learn about using BigQuery for their data analysis needs. Through a combination of videos, labs, and demos, we cover various topics that discuss how to ingest, transform, and query your data in BigQuery to derive insights that can help in business decision making.
「Create ML Models with BigQuery ML」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了し、スキルバッジを獲得して ネットワークで共有しましょう。
機械学習を学んで実践し、SQL だけを使用して、数時間ではなく数分でモデルをビルドしたいとお考えの場合、BigQuery の新機能である BigQuery ML を使用すれば、最小限のコーディングで機械学習モデルの作成、トレーニング、評価、予測が可能になります。この一連のラボでは、さまざまなモデルタイプを試して、優れたモデルを作成する方法を学習します。
これは「Data to Insights」コースシリーズの 2 つ目のコースです。ここでは、新しい外部データセットを BigQuery に取り込み、Looker Studio で可視化する方法について説明します。また、複数テーブルの JOIN と UNION など、中級者向けの SQL のコンセプトについても説明します。JOIN や UNION を使用すると、複数のデータソースのデータを分析できます。 注: すでに SQL に関する知識をお持ちの方も、BigQuery に固有の要素(クエリ キャッシュやテーブル ワイルドカードの処理など)について学ぶことができます。 このコースを修了したら、「Achieving Advanced Insights with BigQuery」コースに登録してください。
この初級コースでは、Google Cloud のデータ分析ワークフローについてと、データを探索、分析、可視化し、得られた情報をステークホルダーと共有するために使用できるツールについて学びます。ケーススタディを取り上げながら、ハンズオンラボ、講義、理解度チェック、デモを通じて、元データセットをクリーンなデータに、さらには効果的な可視化やダッシュボードに生まれ変わらせる方法を示します。このコースは、Google Cloud で成果を上げる方法を知りたいと思っているデータ実務担当者にも、さらなるキャリアアップを目指している方にも、専門知識を深める入口として最適な内容になっています。データ分析業務を実際に行っている、あるいはデータ分析を利用している大多数の人に有益です。
このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。
このコースでは、まず、データ品質を向上させる方法や探索的データ分析を行う方法など、データについての議論から始めます。Vertex AI AutoML について確認し、コードを一切記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。また、BigQuery ML のメリットを確認します。その後、ML モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けに ML モデルの品質を評価する方法を説明します。
Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.
In this course you will learn how to use the new generative AI features in Dialogflow CX to create virtual agents that can have more natural and engaging conversations with customers. Discover how to deploy generative fallback responses to gracefully handle errors and omissions in customer conversations, deploy generators to increase intent coverage, and structure, ingest, and manage data in a data store. And explore how to deploy and maintain generative AI agents using your data, and deploy and maintain hybrid agents in combination with existing intent-based design paradigms.
このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。
このコースでは、Vertex AI ベクトル検索を紹介し、エンべディングのための大規模言語モデル(LLM)API を組み込んだ検索アプリケーションを構築するために使用する方法を説明します。このコースは、ベクトル検索とテキスト エンベディングの概念の説明、Vertex AI でベクトル検索を構築する実用的なデモ、ハンズオンラボで構成されています。
このコースでは、生成 AI モデルのプロトタイピングやカスタマイズを行うためのツールである Vertex AI Studio をご紹介します。没入型レッスン、訴求力のあるデモやハンズオンラボを通して、生成 AI ワークフローを詳しく探るとともに、Gemini マルチモーダル アプリケーション、プロント設計、モデルのチューニングのために Vertex AI Studio を活用する方法を学びます。Vertex AI Studio を使用して、プロジェクトでこれらのモデルを最大限に活用できるようにすることを目的としています。
このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。
このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。
このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャであるエンコーダ / デコーダ アーキテクチャの概要を説明します。エンコーダ / デコーダ アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するためのエンコーダ / デコーダ アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。
このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
「Prompt Design in Vertex AI」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、Google のプロダクトとサービスを使用してアプリケーションを開発、テスト、デプロイ、管理するうえでどのように役立つかを学習します。Gemini を利用して、ウェブ アプリケーションを開発および構築する方法、アプリケーションのエラーを修正する方法、テストを作成する方法、データをクエリする方法を学びます。ハンズオンラボでは、Gemini を使用することでソフトウェア開発ライフサイクル(SDLC)がどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。
Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。このコースでは、Google Meet での Gemini の機能について掘り下げます。動画レッスン、ハンズオン アクティビティ、実用的な例を通じて Google Meet の Gemini 機能を総合的に理解し、Gemini を使用した背景画像の生成、ビデオ通話の映りの改善、字幕翻訳の方法を学びます。このコースを修了すると、Google Meet で Gemini を自信を持って活用し、ビデオ会議の効果を最大限に高めるための知識とスキルを身に付けられます。
Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スプレッドシートの生産性と効率を向上させる方法について学びます。
Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スライドの生産性と効率を向上させる方法について学びます。
Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。動画レッスン、ハンズオン アクティビティ、実用的な例を使用して、Gemini in Google ドキュメントの機能について詳しく説明します。Gemini を使用して、プロンプトに基づいて文書のコンテンツを生成する方法を学びます。また、Gemini を使用して、記述済みのテキストを編集し、全体的な生産性の向上を支援することも検討します。このコースを修了すると、自信を持って Gemini in Google ドキュメントを活用し、文章作成能力を向上させるための知識やスキルを身に付けることができます。
Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Gmail の生産性と効率を向上させる方法について学びます。
Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。この学習プログラムでは、Gemini の主な機能と、それらの機能を使用して Google Workspace の生産性と効率を向上させる方法について学びます。