参加 ログイン

Shimamura Yuya

メンバー加入日: 2021

シルバーリーグ

11220 ポイント
Build and Deploy a Generative AI solution using a RAG framework のバッジ Build and Deploy a Generative AI solution using a RAG framework Earned 8月 21, 2024 EDT
Orchestrate LLM solutions with LangChain のバッジ Orchestrate LLM solutions with LangChain Earned 8月 19, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications のバッジ Develop Advanced Enterprise Search and Conversation Applications Earned 8月 19, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps のバッジ Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 8月 15, 2024 EDT
Text Prompt Engineering Techniques のバッジ Text Prompt Engineering Techniques Earned 7月 22, 2024 EDT
Generative AI Fundamentals のバッジ Generative AI Fundamentals Earned 7月 21, 2024 EDT
Responsible AI: Applying AI Principles with Google Cloud - 日本語版 のバッジ Responsible AI: Applying AI Principles with Google Cloud - 日本語版 Earned 7月 21, 2024 EDT
Introduction to Generative AI Studio - 日本語版 のバッジ Introduction to Generative AI Studio - 日本語版 Earned 7月 21, 2024 EDT
Introduction to Generative AI - 日本語版 のバッジ Introduction to Generative AI - 日本語版 Earned 7月 21, 2024 EDT
Prompt Design in Vertex AI のバッジ Prompt Design in Vertex AI Earned 7月 21, 2024 EDT
Introduction to Vertex AI Studio - 日本語版 のバッジ Introduction to Vertex AI Studio - 日本語版 Earned 8月 17, 2023 EDT
Create Image Captioning Models - 日本語版 のバッジ Create Image Captioning Models - 日本語版 Earned 8月 17, 2023 EDT
Transformer Models and BERT Model - 日本語版 のバッジ Transformer Models and BERT Model - 日本語版 Earned 8月 17, 2023 EDT
Attention Mechanism - 日本語版 のバッジ Attention Mechanism - 日本語版 Earned 8月 16, 2023 EDT
Encoder-Decoder Architecture - 日本語版 のバッジ Encoder-Decoder Architecture - 日本語版 Earned 8月 16, 2023 EDT
Introduction to Image Generation - 日本語版 のバッジ Introduction to Image Generation - 日本語版 Earned 8月 16, 2023 EDT
Generative AI Fundamentals - 日本語版 のバッジ Generative AI Fundamentals - 日本語版 Earned 8月 16, 2023 EDT
Introduction to Responsible AI - 日本語版 のバッジ Introduction to Responsible AI - 日本語版 Earned 8月 16, 2023 EDT
Introduction to Large Language Models - 日本語版 のバッジ Introduction to Large Language Models - 日本語版 Earned 8月 16, 2023 EDT
Introduction to Generative AI - 日本語版 のバッジ Introduction to Generative AI - 日本語版 Earned 8月 14, 2023 EDT

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

詳細

Learn to use LangChain to call Google Cloud LLMs and Generative AI Services and Datastores to simplify complex applications' code.

詳細

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

詳細

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

このコースでは、Vertex AI の Generative AI Studio をご紹介します。Generative AI Studio によりジェネレーティブ AI モデルのプロトタイプ作成とカスタマイズを行い、ジェネレーティブ AI 機能を自社のアプリケーションで活用できます。このコースでは、Generative AI Studio の概要、機能とオプション、使用方法をデモを通じて学びます。コースの最後には、ハンズオンラボで学んだことを実践し、クイズで理解度を確認しましょう。

詳細

この入門レベルのマイクロラーニング コースでは、ジェネレーティブ AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自のジェネレーティブ AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

「Prompt Design in Vertex AI」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

このコースでは、生成 AI モデルのプロトタイピングやカスタマイズを行うためのツールである Vertex AI Studio をご紹介します。没入型レッスン、訴求力のあるデモやハンズオンラボを通して、生成 AI ワークフローを詳しく探るとともに、Gemini マルチモーダル アプリケーション、プロント設計、モデルのチューニングのために Vertex AI Studio を活用する方法を学びます。Vertex AI Studio を使用して、プロジェクトでこれらのモデルを最大限に活用できるようにすることを目的としています。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャであるエンコーダ / デコーダ アーキテクチャの概要を説明します。エンコーダ / デコーダ アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するためのエンコーダ / デコーダ アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細