DAMODAR SELVAM
Membro dal giorno 2019
Campionato Oro
8470 punti
Membro dal giorno 2019
Questo corso ti offre un riepilogo dell'architettura encoder-decoder, che è un'architettura di machine learning potente e diffusa per attività da sequenza a sequenza come traduzione automatica, riassunto del testo e risposta alle domande. Apprenderai i componenti principali dell'architettura encoder-decoder e come addestrare e fornire questi modelli. Nella procedura dettagliata del lab corrispondente, implementerai in TensorFlow dall'inizio un semplice codice dell'architettura encoder-decoder per la generazione di poesie da zero.
Questo corso ti insegna come creare un modello per le didascalie delle immagini utilizzando il deep learning. Scoprirai i diversi componenti di un modello per le didascalie delle immagini, come l'encoder e il decoder, e imparerai ad addestrare e valutare il tuo modello. Alla fine di questo corso, sarai in grado di creare modelli personali per le didascalie delle immagini e utilizzarli per generare didascalie per le immagini.
Questo corso introduce i modelli di diffusione, una famiglia di modelli di machine learning che recentemente si sono dimostrati promettenti nello spazio di generazione delle immagini. I modelli di diffusione traggono ispirazione dalla fisica, in particolare dalla termodinamica. Negli ultimi anni, i modelli di diffusione sono diventati popolari sia nella ricerca che nella produzione. I modelli di diffusione sono alla base di molti modelli e strumenti di generazione di immagini all'avanguardia su Google Cloud. Questo corso ti introduce alla teoria alla base dei modelli di diffusione e a come addestrarli ed eseguirne il deployment su Vertex AI.
Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.
Questo è un corso di microlearning di livello introduttivo che esplora cosa sono i modelli linguistici di grandi dimensioni (LLM), i casi d'uso in cui possono essere utilizzati e come è possibile utilizzare l'ottimizzazione dei prompt per migliorare le prestazioni dei modelli LLM. Descrive inoltre gli strumenti Google per aiutarti a sviluppare le tue app Gen AI.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
L'integrazione del machine learning nelle pipeline di dati aumenta la capacità di estrarre insight dai dati. Questo corso illustra i modi in cui il machine learning può essere incluso nelle pipeline di dati su Google Cloud. Per una personalizzazione minima o nulla, il corso tratta di AutoML. Per funzionalità di machine learning più personalizzate, il corso introduce Notebooks e BigQuery Machine Learning (BigQuery ML). Inoltre, il corso spiega come mettere in produzione soluzioni di machine learning utilizzando Vertex AI.
L'elaborazione dei flussi di dati sta diventando sempre più diffusa poiché la modalità flusso consente alle aziende di ottenere parametri in tempo reale sulle operazioni aziendali. Questo corso tratta la creazione di pipeline di dati in modalità flusso su Google Cloud. Pub/Sub viene presentato come strumento per la gestione dei flussi di dati in entrata. Il corso spiega anche come applicare aggregazioni e trasformazioni ai flussi di dati utilizzando Dataflow e come archiviare i record elaborati in BigQuery o Bigtable per l'analisi. Gli studenti acquisiranno esperienza pratica nella creazione di componenti della pipeline di dati in modalità flusso su Google Cloud utilizzando QwikLabs.
Le pipeline di dati in genere rientrano in uno dei paradigmi EL (Extract, Load), ELT (Extract, Load, Transform) o ETL (Extract, Transform, Load). Questo corso descrive quale paradigma dovrebbe essere utilizzato e quando per i dati in batch. Inoltre, questo corso tratta diverse tecnologie su Google Cloud per la trasformazione dei dati, tra cui BigQuery, l'esecuzione di Spark su Dataproc, i grafici della pipeline in Cloud Data Fusion e trattamento dati serverless con Dataflow. Gli studenti fanno esperienza pratica nella creazione di componenti della pipeline di dati su Google Cloud utilizzando Qwiklabs.
This quest of "Challenge Labs" gives the student preparing for the Google Cloud Certified Professional Cloud Architect certification hands-on practice with common business/technology solutions using Google Cloud architectures. Challenge Labs do not provide the "cookbook" steps, but require solutions to be built with minimal guidance, across many Google Cloud technologies. All labs have activity tracking, and in order to earn this badge you must score 100% in each lab. This quest is not easy and will put your Google Cloud technology skills to the test! Be aware that while practice with these labs will increase your knowledge and abilities, additional study, experience, and background in cloud architecture is recommended to prepare for this certification. Complete this quest to receive an exclusive Google Cloud digital badge.
I due componenti chiave di qualsiasi pipeline di dati sono costituiti dai data lake e dai data warehouse. In questo corso evidenzieremo i casi d'uso per ogni tipo di spazio di archiviazione e approfondiremo i dettagli tecnici delle soluzioni di data lake e data warehouse disponibili su Google Cloud. Inoltre, descriveremo il ruolo di un data engineer, illustreremo i vantaggi di una pipeline di dati di successo per le operazioni aziendali ed esamineremo i motivi per cui il data engineering dovrebbe essere eseguito in un ambiente cloud. Questo è il primo corso della serie Data Engineering on Google Cloud. Dopo il completamento di questo corso, iscriviti al corso Building Batch Data Pipelines on Google Cloud.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
Questo corso presenta i prodotti e i servizi per big data e di machine learning di Google Cloud che supportano il ciclo di vita dai dati all'IA. Esplora i processi, le sfide e i vantaggi della creazione di una pipeline di big data e di modelli di machine learning con Vertex AI su Google Cloud.
This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.
This course version is for non-English only. If you wish to take this course in English, please enroll here: Elastic Google Cloud Infrastructure: Scaling and Automation. If you wish to take it in another language, change your language in settings to see availability.
Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, macchine virtuali e servizi per applicazioni, ed eseguirne il deployment. Imparerai a utilizzare Google Cloud mediante la console e Cloud Shell. Scoprirai inoltre il ruolo del Cloud Architect, gli approcci alla progettazione dell'infrastruttura e la configurazione del networking virtuale con VPC (Virtual Private Cloud), progetti, reti, subnet, indirizzi IP, route e regole firewall.
Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, sistemi e servizi per applicazioni, ed eseguirne il deployment. Questo corso tratta inoltre del deployment di soluzioni pratiche quali, ad esempio, chiavi di crittografia fornite dal cliente, gestione di sicurezza e accessi, quote e fatturazione, monitoraggio delle risorse.
Questo corso spiega agli studenti come creare soluzioni efficienti e ad alta affidabilità su Google Cloud utilizzando pattern di progettazione comprovati. È la continuazione del corso Architecting with Google Compute Engine o Architecting with Google Kubernetes Engine e presuppone che si abbia esperienza pratica con le tecnologie esaminate in uno dei due corsi. Attraverso una combinazione di presentazioni, attività di progettazione e lab pratici, i partecipanti impareranno a definire e bilanciare i requisiti aziendali e tecnici per progettare deployment Google Cloud estremamente affidabili, sicuri, economicamente convenienti e ad alta disponibilità.
This content is deprecated. Please see the latest version of the course, here.