Teilnehmen Anmelden

Carlos Guerreiro

Mitglied seit 2023

Diamond League

19385 Punkte
Badge für Developing Data Models with LookML Developing Data Models with LookML Earned Jun 26, 2024 EDT
Badge für Understanding LookML in Looker Understanding LookML in Looker Earned Jun 23, 2024 EDT
Badge für Prepare Data for Looker Dashboards and Reports Prepare Data for Looker Dashboards and Reports Earned Jun 23, 2024 EDT
Badge für Prepare Data for ML APIs on Google Cloud Prepare Data for ML APIs on Google Cloud Earned Nov 25, 2023 EST
Badge für Google Cloud Fundamentals: Core Infrastructure Google Cloud Fundamentals: Core Infrastructure Earned Nov 19, 2023 EST
Badge für Cloud Functions: 3 Ways Cloud Functions: 3 Ways Earned Nov 19, 2023 EST
Badge für BigQuery Fundamentals for Redshift Professionals BigQuery Fundamentals for Redshift Professionals Earned Okt 14, 2023 EDT
Badge für Set Up an App Dev Environment on Google Cloud Set Up an App Dev Environment on Google Cloud Earned Okt 8, 2023 EDT
Badge für Optimize Costs for Google Kubernetes Engine Optimize Costs for Google Kubernetes Engine Earned Okt 7, 2023 EDT
Badge für Implement Cloud Security Fundamentals on Google Cloud Implement Cloud Security Fundamentals on Google Cloud Earned Sep 23, 2023 EDT
Badge für Analyzing and Visualizing Data in Looker Analyzing and Visualizing Data in Looker Earned Sep 17, 2023 EDT
Badge für Logging and Monitoring in Google Cloud Logging and Monitoring in Google Cloud Earned Sep 16, 2023 EDT
Badge für Generative AI Explorer - Vertex AI Generative AI Explorer - Vertex AI Earned Sep 2, 2023 EDT
Badge für Reliable Google Cloud Infrastructure: Design and Process Reliable Google Cloud Infrastructure: Design and Process Earned Aug 26, 2023 EDT
Badge für Responsible AI: Applying AI Principles with Google Cloud - Deutsch Responsible AI: Applying AI Principles with Google Cloud - Deutsch Earned Aug 26, 2023 EDT
Badge für Launching into Machine Learning Launching into Machine Learning Earned Jun 27, 2023 EDT
Badge für How Google Does Machine Learning How Google Does Machine Learning Earned Jun 14, 2023 EDT
Badge für Introduction to Vertex AI Studio - Deutsch Introduction to Vertex AI Studio - Deutsch Earned Jun 9, 2023 EDT
Badge für Create Image Captioning Models - Deutsch Create Image Captioning Models - Deutsch Earned Jun 9, 2023 EDT
Badge für Transformer Models and BERT Model - Deutsch Transformer Models and BERT Model - Deutsch Earned Jun 9, 2023 EDT
Badge für Attention Mechanism - Deutsch Attention Mechanism - Deutsch Earned Jun 9, 2023 EDT
Badge für Encoder-Decoder Architecture - Deutsch Encoder-Decoder Architecture - Deutsch Earned Jun 8, 2023 EDT
Badge für Introduction to Image Generation - Deutsch Introduction to Image Generation - Deutsch Earned Jun 8, 2023 EDT
Badge für Generative AI Fundamentals Generative AI Fundamentals Earned Jun 8, 2023 EDT
Badge für Introduction to Responsible AI - Deutsch Introduction to Responsible AI - Deutsch Earned Jun 8, 2023 EDT
Badge für Introduction to Large Language Models - Deutsch Introduction to Large Language Models - Deutsch Earned Jun 8, 2023 EDT
Badge für Introduction to Generative AI - Deutsch Introduction to Generative AI - Deutsch Earned Jun 8, 2023 EDT
Badge für Serverless Data Processing with Dataflow: Foundations Serverless Data Processing with Dataflow: Foundations Earned Jun 1, 2023 EDT
Badge für Smart Analytics, Machine Learning, and AI on Google Cloud Smart Analytics, Machine Learning, and AI on Google Cloud Earned Mai 31, 2023 EDT
Badge für Building Resilient Streaming Analytics Systems on Google Cloud Building Resilient Streaming Analytics Systems on Google Cloud Earned Mai 27, 2023 EDT
Badge für Building Batch Data Pipelines on Google Cloud Building Batch Data Pipelines on Google Cloud Earned Mai 26, 2023 EDT
Badge für Preparing for your Professional Data Engineer Journey Preparing for your Professional Data Engineer Journey Earned Mai 25, 2023 EDT
Badge für Modernizing Data Lakes and Data Warehouses with Google Cloud Modernizing Data Lakes and Data Warehouses with Google Cloud Earned Mai 24, 2023 EDT
Badge für Google Cloud Big Data and Machine Learning Fundamentals Google Cloud Big Data and Machine Learning Fundamentals Earned Mai 23, 2023 EDT
Badge für Build Google Cloud Infrastructure for AWS Professionals Build Google Cloud Infrastructure for AWS Professionals Earned Mai 21, 2023 EDT
Badge für Deploy and Monitor in Google Cloud for AWS Professionals Deploy and Monitor in Google Cloud for AWS Professionals Earned Mai 21, 2023 EDT
Badge für Google Cloud Storage and Containers for AWS Professionals Google Cloud Storage and Containers for AWS Professionals Earned Mai 21, 2023 EDT
Badge für Google Cloud Compute and Scalability for AWS Professionals Google Cloud Compute and Scalability for AWS Professionals Earned Mai 20, 2023 EDT
Badge für Google Cloud IAM and Networking for AWS Professionals Google Cloud IAM and Networking for AWS Professionals Earned Mai 19, 2023 EDT

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

Weitere Informationen

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

Weitere Informationen

Mit dem Skill-Logo zum Kurs „Prepare Data for Looker Dashboards and Reports“ weisen Sie Grundkenntnisse in folgenden Bereichen nach: Filtern, Sortieren und Neuordnen von Daten; Zusammenführen der Ergebnisse von verschiedenen Looker-Explores; Verwenden von Funktionen und Operatoren zum Erstellen von Looker-Dashboards und ‑Berichten für Analyse und Visualisierung von Daten. Ein Skill-Logo ist ein exklusives digitales Abzeichen für Ihre Kenntnisse über unsere Produkte und Dienste, das von Google Cloud ausgestellt wird. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Prepare Data for ML APIs on Google Cloud weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Geschäftssituation anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.

Weitere Informationen

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

Weitere Informationen

Earn a skill badge by completing the Cloud Functions: 3 Ways course, where you learn how to use Cloud Functions (including 2nd gen) through the Google Cloud console and on the command line. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Weitere Informationen

This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Redshift and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Redshift, you also learn about similarities and differences between Redshift and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.

Weitere Informationen

Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Weitere Informationen

Complete the intermediate Optimize Costs for Google Kubernetes Engine skill badge to demonstrate skills in the following: creating and managing multi-tenant clusters, monitoring resource usage by namespace, configuring cluster and pod autoscaling for efficiency, setting up load balancing for optimal resource distribution, and implementing liveness and readiness probes to ensure application health and cost-effectiveness. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Implement Cloud Security Fundamentals on Google Cloud weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen und Zuweisen von Rollen mit Identity and Access Management (IAM); Erstellen und Verwalten von Dienstkonten; Herstellen einer privaten Verbindung zwischen Virtual Private Cloud-Netzwerken (VPC); Beschränken des Anwendungszugriffs mithilfe von Identity-Aware Proxy; Verwalten von Schlüsseln und verschlüsselten Daten mit Cloud Key Management Service (KMS); und Erstellen eines privaten Kubernetes-Clusters. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch Ihre Fähigkeit bewertet, Ihr Wissen in einer interaktiven praxisnahen Umgebung anzuwenden. Absolvieren Sie eine kursspezifische Aufgabenreihe und die Challenge-Lab-Prüfung, um ein digitales Abzeichen zu erhalten, das Sie in Ihrem Netzwerk posten …

Weitere Informationen

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Weitere Informationen

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Weitere Informationen

The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.

Weitere Informationen

This course equips students to build highly reliable and efficient solutions on Google Cloud using proven design patterns. It is a continuation of the Architecting with Google Compute Engine or Architecting with Google Kubernetes Engine courses and assumes hands-on experience with the technologies covered in either of those courses. Through a combination of presentations, design activities, and hands-on labs, participants learn to define and balance business and technical requirements to design Google Cloud deployments that are highly reliable, highly available, secure, and cost-effective.

Weitere Informationen

Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.

Weitere Informationen

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Weitere Informationen

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Weitere Informationen

Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für das Erstellen und Anpassen von Modellen basierend auf generativer KI. Anhand von umfassenden Lektionen, ansprechenden Demos und eines praxisorientierten Labs lernen Sie einen KI-Workflow kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design und Modellabstimmung nutzen. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial dieser Modelle in Ihren Projekten mit Vertex AI Studio ausschöpfen.

Weitere Informationen

In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln

Weitere Informationen

Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.

Weitere Informationen

In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.

Weitere Informationen

Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.

Weitere Informationen

In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.

Weitere Informationen

Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.

Weitere Informationen

In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.

Weitere Informationen

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Weitere Informationen

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Weitere Informationen

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Weitere Informationen

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Weitere Informationen

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Weitere Informationen

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Weitere Informationen

Earn a skill badge by completing the Build Google Cloud Infrastructure for AWS Professionals course, where you learn how to configure IAM permission, orchestrate workloads using Kubernetes, host a web application using compute engine, and configure load balancing. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Weitere Informationen

This is the fourth course of a four-course series for cloud architects and engineers with existing AWS knowledge. It compares Google Cloud and AWS solutions and guides professionals on their use. This course focuses on deploying and monitoring applications in Google Cloud. The learners apply the knowledge of monitoring and application deployment processes in AWS to explore the differences with Google Cloud. Learners get hands-on practice building and managing Google Cloud resources.

Weitere Informationen

This is the third course of a four-course series for cloud architects and engineers with existing AWS knowledge, and it compares Google Cloud and AWS solutions and guides professionals on their use. This course focuses on Storage Options and containers in Google Cloud. The learners apply the knowledge of storage and containers in AWS to explore the similarities and differences with storage and containers in Google Cloud. Learners get hands-on practice building and managing Google Cloud resources.

Weitere Informationen

This is the second course of a four-course series for cloud architects and engineers with existing AWS knowledge. It aims to compare Google Cloud and AWS solutions and guide professionals on their use. This course focuses on compute resources and load balancing in Google Cloud. The learner will apply the knowledge of using virtual machines and load balancers in AWS to explore the similarities and differences with configuring and managing compute resources and load balancers in Google Cloud. Learners will get hands-on practice building and managing Google Cloud resources.

Weitere Informationen

This is the first course of a four-course series for cloud architects and engineers with existing AWS knowledge, and it compares Google Cloud and AWS solutions and guides professionals on their use. This course focuses on Identity and Access Management (IAM) and networking in Google Cloud. The learners apply the knowledge of access management and networking in AWS to explore the similarities and differences with access management and networking in Google Cloud. Learners get hands-on practice building and managing Google Cloud resources.

Weitere Informationen