Join Sign in

Ridha Ginanjar

Member since 2020

Bronze League

16965 points
Badge for Google Cloud Big Data and Machine Learning Fundamentals Google Cloud Big Data and Machine Learning Fundamentals Earned سبتمبر 23, 2023 EDT
Badge for Preparing for your Professional Data Engineer Journey Preparing for your Professional Data Engineer Journey Earned سبتمبر 22, 2023 EDT
Badge for Smart Analytics, Machine Learning, and AI on Google Cloud Smart Analytics, Machine Learning, and AI on Google Cloud Earned سبتمبر 20, 2023 EDT
Badge for Building Resilient Streaming Analytics Systems on Google Cloud Building Resilient Streaming Analytics Systems on Google Cloud Earned سبتمبر 18, 2023 EDT
Badge for Building Batch Data Pipelines on Google Cloud Building Batch Data Pipelines on Google Cloud Earned سبتمبر 16, 2023 EDT
Badge for Modernizing Data Lakes and Data Warehouses with Google Cloud Modernizing Data Lakes and Data Warehouses with Google Cloud Earned سبتمبر 12, 2023 EDT
Badge for Engineer Data for Predictive Modeling with BigQuery ML Engineer Data for Predictive Modeling with BigQuery ML Earned سبتمبر 22, 2021 EDT
Badge for [DEPRECATED] Data Engineering [DEPRECATED] Data Engineering Earned سبتمبر 22, 2021 EDT
Badge for Building Codeless Pipelines on Cloud Data Fusion Building Codeless Pipelines on Cloud Data Fusion Earned سبتمبر 21, 2021 EDT
Badge for Scientific Data Processing Scientific Data Processing Earned سبتمبر 21, 2021 EDT
Badge for BigQuery for Marketing Analysts BigQuery for Marketing Analysts Earned سبتمبر 20, 2021 EDT
Badge for Applied Data: Blockchain Applied Data: Blockchain Earned سبتمبر 20, 2021 EDT
Badge for Data Catalog Fundamentals Data Catalog Fundamentals Earned سبتمبر 20, 2021 EDT
Badge for Prepare Data for ML APIs on Google Cloud Prepare Data for ML APIs on Google Cloud Earned سبتمبر 20, 2021 EDT
Badge for Build a Data Warehouse with BigQuery Build a Data Warehouse with BigQuery Earned سبتمبر 19, 2021 EDT
Badge for Create ML Models with BigQuery ML Create ML Models with BigQuery ML Earned سبتمبر 19, 2021 EDT
Badge for DEPRECATED BigQuery Basics for Data Analysts DEPRECATED BigQuery Basics for Data Analysts Earned سبتمبر 17, 2021 EDT
Badge for Derive Insights from BigQuery Data Derive Insights from BigQuery Data Earned سبتمبر 16, 2021 EDT
Badge for NCAA® March Madness®: Bracketology with Google Cloud NCAA® March Madness®: Bracketology with Google Cloud Earned سبتمبر 16, 2021 EDT
Badge for Data Science on Google Cloud Data Science on Google Cloud Earned سبتمبر 16, 2021 EDT

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Learn more

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Learn more

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Learn more

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Learn more

This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.

Learn more

Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.

Learn more

Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Learn more

Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this Quest you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. This Quest brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this Quest utilizes advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start. The final lab is an advanced challenge-style lab in which there are elements where you are not provided the answer but must solve it for yourself.

Learn more

Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

Learn more

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network. For practice with BigQuery fundamentals (including working with the console and command line), complete the course titled BigQuery Basics for Data Analysts.

Learn more

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in the following: creating and evaluating machine learning models with BigQuery ML to make data predictions. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Learn more

Complete the introductory Derive Insights from BigQuery Data skill badge to demonstrate skills in the following: write SQL queries, query public tables, load sample data into BigQuery, troubleshoot common syntax errors with the query validator in BigQuery, and create reports in Looker Studio by connecting to BigQuery data. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

Learn more

This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.

Learn more