Ridha Ginanjar
Miembro desde 2020
Miembro desde 2020
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.
El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.
Las canalizaciones de datos suelen realizarse según uno de los siguientes paradigmas: extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, gráficos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los alumnos obtendrán experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.
Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Data Engineering on Google Cloud. Después de completar este curso, inscríbete en el curso Building Batch Data Pipelines on Google Cloud.
Completa la insignia de habilidad intermedia del curso Engineer Data for Predictive Modeling with BigQuery ML y demuestra tus capacidades para hacer lo siguiente: compilar canalizaciones para transformar datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL); compilar modelos de aprendizaje automático con BigQuery ML, y usar Cloud Composer para copiar datos en múltiples ubicaciones. Una insignia de habilidad es una insignia digital exclusiva otorgada por Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad para aplicar tus conocimientos en un entorno interactivo y práctico. Completa la insignia de habilidad del curso y el Lab de desafío de la evaluación final para recibir una insignia digital que podrás compartir en tus redes.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.
¿Macrodatos, aprendizaje automático y datos científicos? Parece la combinación perfecta. En esta Quest de nivel avanzado, obtendrá experiencia práctica en servicios de GCP como Big Query, Dataproc y Tensorflow, aplicándolos a casos prácticos en los que se usan conjuntos de datos científicos de la vida real. Mediante la adquisición de experiencia en tareas como el análisis de datos de terremotos y la agregación de imágenes satelitales, Scientific Data Processing lo ayudará a expandir sus habilidades en macrodatos y aprendizaje automático para que pueda solucionar problemas propios relacionados con un amplio espectro de disciplinas científicas.
¿Desea convertir sus datos de marketing en estadísticas y compilar paneles? Reúna todos sus datos en un solo lugar para lograr un análisis a gran escala y poder compilar modelos. Aprenda a consultar sus datos y utilice BigQuery para obtener información repetible, escalable y valiosa. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this Quest you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. This Quest brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this Quest utilizes advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start. The final lab is an advanced challenge-style lab in which there are elements where you are not provided the answer but must solve it for yourself.
Data Catalog es un servicio de administración de metadatos completamente administrado y escalable que permite a las organizaciones descubrir, comprender y administrar todos sus datos con rapidez.En esta Quest, comenzará por aprender actividades básicas como buscar y etiquetar recursos de datos y metadatos con Data Catalog. Una vez que aprenda a crear sus propias plantillas de etiquetado que se mapeen a datos de tablas de BigQuery, descubrirá cómo incorporar MySQL, PostgreSQL y SQL Server a conectores de Data Catalog.
Completa la insignia de habilidad introductoria Prepare Data for ML APIs on Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tus contactos.
Completa la insignia de habilidad intermedia Build a Data Warehouse with BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso con insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia digital que puedes compartir con tus contactos.
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in the following: creating and evaluating machine learning models with BigQuery ML to make data predictions. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Completa la insignia de habilidad introductoria del curso Derive Insights from BigQuery Data y demuestra tus habilidades para realizar las siguientes actividades: escribir consultas en SQL, consultar tablas públicas, cargar datos de muestra en BigQuery, solucionar problemas de errores de sintaxis habituales con el validador de consultas en BigQuery y crear informes en Looker Studio con la conexión a datos de BigQuery. Una insignia de habilidad es una insignia digital exclusiva que emite el equipo de Google Cloud en reconocimiento a tu dominio de los productos y servicios de la plataforma y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa el curso y el lab de desafío de la evaluación final para recibir una insignia de habilidad que puedes compartir con tus contactos.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Esta es la primera de las dos Quests de labs prácticos derivada de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, editado por O'Reilly Media, Inc. En esta primera Quest, en el capítulo 8, tiene la oportunidad de practicar todos los aspectos de la transferencia, la preparación, el procesamiento, las consultas, la exploración y la visualización de los conjuntos de datos con las herramientas y los servicios de Google Cloud Platform.