Pham Viet Hung
Participante desde 2023
Liga Prata
2630 pontos
Participante desde 2023
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this quest you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out! Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Esta Quest de nível básico é exclusiva entre as outras ofertas do Qwiklabs. Os laboratórios foram criados para oferecer um treinamento prático aos profissionais de TI nos tópicos e serviços da certificação Associate Cloud Engineer do Google Cloud. Abrangendo desde IAM e serviços de rede até a implantação do Kubernetes Engine, esta Quest é composta de laboratórios específicos que colocarão à prova seu conhecimento sobre o GCP. Os laboratórios ajudarão a desenvolver suas habilidades, mas recomendamos que você também consulte o guia do exame e outros materiais preparatórios disponíveis.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta que gera protótipos e personaliza modelos de IA generativa. Com lições imersivas, demonstrações interessantes e um laboratório, você vai conhecer o fluxo de trabalho da IA generativa, além de aprender a usar o Vertex AI Studio para aplicativos do Gemini multimodal, design de comando e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial desses modelos nos seus projetos com o Vertex AI Studio.
Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.
Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.