Kalyanasundaram Balasubramanian
Membro dal giorno 2018
Campionato Diamante
31970 punti
Membro dal giorno 2018
Complete the intermediate Develop GenAI Apps with Gemini and Streamlit skill badge to demonstrate skills in the following: text generation, applying function calls with the Python SDK and the Gemini API, and deploying a Streamlit application with Cloud Run. You will explore different ways to prompt Gemini for text generation, use Cloud Shell to test and iterate on a Streamlit application, and then package it as a Docker container deployed in Cloud Run. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you use Google products and services to develop, test, deploy, and manage applications. With help from Gemini, you learn how to develop and build a web application, fix errors in the application, develop tests, and query data. Using a hands-on lab, you experience how Gemini improves the software development lifecycle (SDLC). Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps engineers manage infrastructure. You learn how to prompt Gemini to find and understand application logs, create a GKE cluster, and investigate how to create a build environment. Using a hands-on lab, you experience how Gemini improves the DevOps workflow. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps you secure your cloud environment and resources. You learn how to deploy example workloads into an environment in Google Cloud, identify security misconfigurations with Gemini, and remediate security misconfigurations with Gemini. Using a hands-on lab, you experience how Gemini improves your cloud security posture. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps network engineers create, update, and maintain VPC networks. You learn how to prompt Gemini to provide specific guidance for your networking tasks, beyond what you would receive from a search engine. Using a hands-on lab, you experience how Gemini makes it easier for you to work with Google Cloud VPC networks. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps administrators provision infrastructure. You learn how to prompt Gemini to explain infrastructure, deploy GKE clusters and update existing infrastructure. Using a hands-on lab, you experience how Gemini improves the GKE deployment workflow. Duet AI was renamed to Gemini, our next-generation model.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps developers build applications. You learn how to prompt Gemini to explain code, recommend Google Cloud services, and generate code for your applications. Using a hands-on lab, you experience how Gemini improves the application development workflow. Duet AI was renamed to Gemini, our next-generation model.
Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization. Skill badges validate your practical knowledge on specific products through hands-on labs and challenge assessments. Earn a badge by completing a course or jump straight into the challenge lab to get your badge today. Badges prove your proficiency, enhance your professional profile, and ultimately lead to increased career opportunities. Visit your profile to track badges you’ve earned.
Earn a skill badge by completing the Develop your Google Cloud Network course, where you learn multiple ways to deploy and monitor applications including how to: explore IAM rols and add/remove project access, create VPC networks, deploy and monitor Compute Engine VMs, write SQL queries, deploy and monitor VMs in Compute Engine, and deploy applications using Kubernetes with multiple deployment approaches. A skill badge is an exclusivedigital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
Ti diamo il benvenuto nel corso Getting Started with Google Kubernetes Engine. Se ti interessa Kubernetes, un livello software che si trova tra le tue applicazioni e la tua infrastruttura hardware, allora sei nel posto giusto. Google Kubernetes Engine ti offre Kubernetes come servizio gestito su Google Cloud. L'obiettivo di questo corso è illustrare le nozioni di base di Google Kubernetes Engine, o GKE, come viene comunemente chiamato, e come containerizzare le applicazioni e farle funzionare su Google Cloud. Il corso inizia con un'introduzione di base a Google Cloud, seguita da una panoramica dei container e di Kubernetes, dell'architettura di Kubernetes e delle operazioni di Kubernetes.
Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura completa e flessibile e i servizi di piattaforma forniti da Google Cloud. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui interconnessione sicura delle reti, bilanciamento del carico, scalabilità automatica, automazione dell'infrastruttura e servizi gestiti.
Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, sistemi e servizi per applicazioni, ed eseguirne il deployment. Questo corso tratta inoltre del deployment di soluzioni pratiche quali, ad esempio, chiavi di crittografia fornite dal cliente, gestione di sicurezza e accessi, quote e fatturazione, monitoraggio delle risorse.
Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, macchine virtuali e servizi per applicazioni, ed eseguirne il deployment. Imparerai a utilizzare Google Cloud mediante la console e Cloud Shell. Scoprirai inoltre il ruolo del Cloud Architect, gli approcci alla progettazione dell'infrastruttura e la configurazione del networking virtuale con VPC (Virtual Private Cloud), progetti, reti, subnet, indirizzi IP, route e regole firewall.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.
Questo corso ti offre un riepilogo dell'architettura encoder-decoder, che è un'architettura di machine learning potente e diffusa per attività da sequenza a sequenza come traduzione automatica, riassunto del testo e risposta alle domande. Apprenderai i componenti principali dell'architettura encoder-decoder e come addestrare e fornire questi modelli. Nella procedura dettagliata del lab corrispondente, implementerai in TensorFlow dall'inizio un semplice codice dell'architettura encoder-decoder per la generazione di poesie da zero.
Questo corso introduce i modelli di diffusione, una famiglia di modelli di machine learning che recentemente si sono dimostrati promettenti nello spazio di generazione delle immagini. I modelli di diffusione traggono ispirazione dalla fisica, in particolare dalla termodinamica. Negli ultimi anni, i modelli di diffusione sono diventati popolari sia nella ricerca che nella produzione. I modelli di diffusione sono alla base di molti modelli e strumenti di generazione di immagini all'avanguardia su Google Cloud. Questo corso ti introduce alla teoria alla base dei modelli di diffusione e a come addestrarli ed eseguirne il deployment su Vertex AI.
Guadagna un badge delle competenze completando i corsi Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI. Superando il quiz finale, dimostrerai la tua comprensione dei concetti fondamentali relativi all'IA generativa. Un badge delle competenze è un badge digitale rilasciato da Google Cloud come riconoscimento della tua conoscenza dei prodotti e dei servizi Google Cloud. Condividi il tuo badge delle competenze rendendo pubblico il tuo profilo e aggiungendolo al tuo profilo sui social media.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'IA responsabile, perché è importante e in che modo Google implementa l'IA responsabile nei propri prodotti. Introduce anche i 7 principi dell'IA di Google.
Questo è un corso di microlearning di livello introduttivo che esplora cosa sono i modelli linguistici di grandi dimensioni (LLM), i casi d'uso in cui possono essere utilizzati e come è possibile utilizzare l'ottimizzazione dei prompt per migliorare le prestazioni dei modelli LLM. Descrive inoltre gli strumenti Google per aiutarti a sviluppare le tue app Gen AI.
Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.
Welcome to Cloud Hero, Gamers! Click "Join this Game". To modify your player name or avatar, go to your My Account page at https://google.qwiklabs.com. Points are earned by completing the steps in the lab.... and bonus points are earned for speed! Be sure to complete each lab by selecting the END option to get the maximum points. Please respect the GCP resource quotas that have been allocated. Otherwise, you'll waste your Game time and gain fewer points.
People have used machine learning to solve problems ranging from identifying clouds in satellite images to ensuring food safety and responding four times faster to customer emails. In this game, you'll get hands-on experience with advanced training and prediction solutions. Challenge yourself to complete each task as quickly and accurately as possible to score points and earn badges!
Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network. For practice with BigQuery fundamentals (including working with the console and command line), complete the course titled BigQuery Basics for Data Analysts.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
Welcome Gamers! Today's game is all about experimenting with Big Query for Machine Learning! Use real life case studies to learn various concepts of BQML and have fun. Take labs to earn points. The faster you complete the lab objectives, the higher your score.
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
L'integrazione del machine learning nelle pipeline di dati aumenta la capacità di estrarre insight dai dati. Questo corso illustra i modi in cui il machine learning può essere incluso nelle pipeline di dati su Google Cloud. Per una personalizzazione minima o nulla, il corso tratta di AutoML. Per funzionalità di machine learning più personalizzate, il corso introduce Notebooks e BigQuery Machine Learning (BigQuery ML). Inoltre, il corso spiega come mettere in produzione soluzioni di machine learning utilizzando Vertex AI.
L'elaborazione dei flussi di dati sta diventando sempre più diffusa poiché la modalità flusso consente alle aziende di ottenere parametri in tempo reale sulle operazioni aziendali. Questo corso tratta la creazione di pipeline di dati in modalità flusso su Google Cloud. Pub/Sub viene presentato come strumento per la gestione dei flussi di dati in entrata. Il corso spiega anche come applicare aggregazioni e trasformazioni ai flussi di dati utilizzando Dataflow e come archiviare i record elaborati in BigQuery o Bigtable per l'analisi. Gli studenti acquisiranno esperienza pratica nella creazione di componenti della pipeline di dati in modalità flusso su Google Cloud utilizzando QwikLabs.
Le pipeline di dati in genere rientrano in uno dei paradigmi EL (Extract, Load), ELT (Extract, Load, Transform) o ETL (Extract, Transform, Load). Questo corso descrive quale paradigma dovrebbe essere utilizzato e quando per i dati in batch. Inoltre, questo corso tratta diverse tecnologie su Google Cloud per la trasformazione dei dati, tra cui BigQuery, l'esecuzione di Spark su Dataproc, i grafici della pipeline in Cloud Data Fusion e trattamento dati serverless con Dataflow. Gli studenti fanno esperienza pratica nella creazione di componenti della pipeline di dati su Google Cloud utilizzando Qwiklabs.
I due componenti chiave di qualsiasi pipeline di dati sono costituiti dai data lake e dai data warehouse. In questo corso evidenzieremo i casi d'uso per ogni tipo di spazio di archiviazione e approfondiremo i dettagli tecnici delle soluzioni di data lake e data warehouse disponibili su Google Cloud. Inoltre, descriveremo il ruolo di un data engineer, illustreremo i vantaggi di una pipeline di dati di successo per le operazioni aziendali ed esamineremo i motivi per cui il data engineering dovrebbe essere eseguito in un ambiente cloud. Questo è il primo corso della serie Data Engineering on Google Cloud. Dopo il completamento di questo corso, iscriviti al corso Building Batch Data Pipelines on Google Cloud.
Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Ottieni un badge delle competenze completando il corso Configura un ambiente di sviluppo di app su Google Cloud, in cui imparerai a creare e connettere un'infrastruttura cloud incentrata sull'archiviazione utilizzando le funzionalità di base delle seguenti tecnologie: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub. Un badge delle competenze è un badge digitale esclusivo rilasciato da Google Cloud come riconoscimento della tua competenza nell'uso di prodotti e servizi Google Cloud dopo aver messo alla prova la tua capacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso e il Challenge Lab conclusivo per ricevere un badge delle competenze da condividere con la tua rete.
Google Cloud Fundamentals: Core Infrastructure introduce concetti e terminologia importanti per lavorare con Google Cloud. Attraverso video e lab pratici, questo corso presenta e confronta molti dei servizi di computing e archiviazione di Google Cloud, insieme a importanti strumenti di gestione delle risorse e dei criteri.
Complete the introductory Implement Load Balancing on Compute Engine skill badge to demonstrate skills in the following: writing gcloud commands and using Cloud Shell, creating and deploying virtual machines in Compute Engine, and configuring network and HTTP load balancers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that often struggle to achieve the scale and speed needed to meet modern customer expectations. Business leaders and IT decision makers constantly have to choose between maintenance of legacy systems and investing in innovative new products and services. This course explores the challenges of an outdated IT infrastructure and how businesses can modernize it using cloud technology. It begins by exploring the different compute options available in the cloud and the benefits of each, before turning to application modernization and Application Programming Interfaces (APIs). The course also considers a range of Google Cloud solutions that can help businesses to better develop and manage their systems, such as Compute Engine, App Engine, and Apigee. This is the third course in the Cloud Digital Leader series. At the end of this course, enroll in the Understanding Google Cloud Security and Operations course.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
Questo corso presenta i prodotti e i servizi per big data e di machine learning di Google Cloud che supportano il ciclo di vita dai dati all'IA. Esplora i processi, le sfide e i vantaggi della creazione di una pipeline di big data e di modelli di machine learning con Vertex AI su Google Cloud.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.