Lee Cheng Hui
Participante desde 2019
Participante desde 2019
Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Não é novidade que o machine learning é um dos campos que mais crescem na área de tecnologia, e o Google Cloud tem sido fundamental para esse desenvolvimento. Com diversas APIs, o Google Cloud tem uma ferramenta para praticamente todos os jobs de machine learning. Nesta Quest de nível avançado, você terá experiência prática com as APIs de machine learning em laboratórios como “Detectar rótulos, rostos, e pontos de referência em imagens com a API Cloud Vision”. Quando terminar a Quest e o laboratório com desafio, você receberá um selo digital exclusivo do Google Cloud. O laboratório com desafio não tem etapas prescritivas. Ele apresenta apenas algumas orientações para você criar soluções e testar suas habilidades sobre a tecnologia do Google Cloud. Quando terminar esta Quest, faça o outro laboratório com desafio ao final da Quest “Integrate with Machine Learning APIs” para receber um selo digital exclusivo do Google Cloud.
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
Conclua o selo de habilidade intermediário Create ML Models with BigQuery ML para demonstrar que você é capaz de: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conclua o curso intermediário Develop Serverless Applications on Cloud Run para demonstrar suas habilidades de integração do Cloud Run com o Cloud Storage para gerenciamento de dados, arquitetura de sistemas assíncronos e resilientes usando o Cloud Run e o Pub/Sub, construção de gateways da API REST com a tecnologia do Cloud Run e a criação e implantação de serviços no Cloud Run. Os selos de habilidade são digitais, exclusivos e emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovar sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conclua o selo de habilidade intermediário Build a Data Warehouse with BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Quer aprender a criar e treinar um modelo de machine learning em minutos em vez de horas usando apenas SQL? O BigQuery Machine Learning é um novo recurso do BigQuery que permite aos analistas de dados criar, treinar, avaliar e fazer previsões usando modelos de machine learning com um mínimo de programação. Nesta série de laboratórios, você testará alguns modelos e saberá quais são as características de um bom modelo.
Não é novidade que o machine learning é um dos campos que mais crescem na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Nesta Quest de nível avançado, você terá experiência prática com as APIs de machine learning em laboratórios como estes: "Como implementar um bot de bate-papo com IA usando o Dialogflow" e "Detectar rótulos, rostos e pontos de referência em imagens com a API Cloud Vision".
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Como são muito especializadas, é difícil encontrar material introdutório sobre elas. A boa notícia é que o GCP oferece serviços fáceis de usar nessas áreas, e o Qwiklabs apresenta informações introdutórias nesta Quest de nível básico. Com isso, você já pode começar a usar ferramentas como o BigQuery, a API Cloud Speech e o Cloud ML Engine. Assista os vídeos rápidos que explicam os conceitos principais dos laboratórios.
Conclua o curso intermediário para obter o selo de habilidade "Prepare Data for Looker Dashboards and Reports" para mostrar que você sabe: filtrar, classificar e dinamizar dados, combinando resultados de análises diferentes do Looker; usar funções e operadores para criar painéis do Looker e gerar relatórios para a análise e visualização de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e comprovam sua capacidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.
Conclua o selo de habilidade introdutório Derive Insights from BigQuery Data para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com seus contatos.
Conquiste o selo de habilidade introdutório Monitor and Log with Google Cloud Observability para mostrar que você sabe: monitorar máquinas virtuais no Compute Engine, usar o Cloud Monitoring para supervisionar vários projetos, ampliar as capacidades de monitoramento e geração de registros para o Cloud Functions, criar e enviar métricas personalizadas do aplicativo e configurar os alertas do Cloud Monitoring de acordo com as métricas personalizadas. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como reconhecimento da sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Data Catalog é um serviço de gerenciamento de metadados totalmente gerenciado e escalonável. Com ele, as organizações descobrem, compreendem e gerenciam rapidamente todos os dados. Nesta Quest, vamos começar com algo simples - você aprenderá como pesquisar e adicionar tags a recursos de dados e metadados usando o Data Catalog. Depois que você aprender a desenvolver seus próprios modelos de tags correlacionados a dados da tabela do BigQuery, mostraremos como criar conectores do MySQL, PostgreSQL e SQLServer para o Data Catalog.
Esta é a segunda e última Quest de laboratórios práticos derivados dos exercícios do livro "Data Science on Google Cloud Platform" de Valliappa Lakshmanan, publicado pela O'Reilly Media, Inc. Nesta etapa, que aborda os assuntos do capítulo nove até o fim do livro, você ampliará as habilidades praticadas na primeira Quest. Você também executará jobs completos de machine learning com ferramentas de última geração e conjuntos de dados do mundo real. Tudo isso será feito com os serviços e ferramentas do Google Cloud Platform.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Conquiste o selo de habilidade introdutório Prepare Data for ML APIs on Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Não é novidade que o machine learning é um dos campos que mais crescem na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Nesta quest de introdução, você terá uma experiência prática com machine learning aplicado ao processamento de linguagem. Nos laboratórios, você poderá extrair entidades de um texto e realizar análise sintática e de sentimentos, além de usar a API de conversão de voz em texto para transcrição.
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
Quer criar ou otimizar um armazenamento de dados? Aprenda práticas recomendadas para extrair, transformar e carregar dados no Google Cloud com o BigQuery. Nesta série de laboratórios interativos, você vai criar e otimizar seu próprio armazenamento usando diversos conjuntos de dados públicos de grande escala do BigQuery. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura ou precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Com ele, você se concentra na análise dos dados para encontrar insights relevantes.
O uso de processamento em grande escala para reconhecer padrões e "ler" imagens é uma das tecnologias básicas da IA, desde carros autônomos até reconhecimento facial. O Google Cloud Platform oferece velocidade e precisão superiores por meio de sistemas que podem ser usados com chamadas de API. Com essas e diversas outras APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Nesta Quest de introdução, você aprenderá na prática a usar machine learning para o processamento de imagens. Nos laboratórios, você terá a oportunidade de rotular imagens, detectar rostos e pontos de referência, além de extrair, analisar e traduzir textos contidos em imagens.
Get started with Go (Golang) by reviewing Go code, and then creating and deploying simple Go apps on Google Cloud. Go is an open source programming language that makes it easy to build fast, reliable, and efficient software at scale. Go runs native on Google Cloud, and is fully supported on Google Kubernetes Engine, Compute Engine, App Engine, Cloud Run, and Cloud Functions. Go is a compiled language and is faster and more efficient than interpreted languages. As a result, Go requires no installed runtime like Node, Python, or JDK to execute.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Nesta missão, você aprenderá sobre os quatro tipos de arquiteturas de sites disponíveis no Google Cloud para garantir que seu site esteja disponível e escalável. Complete esta missão, incluindo o Challenge Lab no final, para receber um selo digital exclusivo do Google Cloud. O Challenge Lab não fornece etapas prescritivas, mas exige a criação de soluções com o mínimo de orientação e testará suas habilidades em tecnologia do Google Cloud. Essa missão é baseada na série de vídeos Get Cooking in Cloud.
Esta Quest é perfeita para desenvolvedores de nuvem iniciantes em busca de treinamento prático que vai além do Getting Started - Create and Manage Cloud Resources. Você ganhará experiência prática com laboratórios que detalham o Cloud Storage e outros serviços de aplicativos fundamentais, como o Stackdriver e o Cloud Functions. Com esta Quest, você desenvolve habilidades valiosas, que poderá aplicar em qualquer iniciativa do GCP. Complete esta missão, incluindo o laboratório de desafios no final, para receber um selo digital exclusivo do Google Cloud. Assista também os vídeos rápidos que explicam os conceitos principais dos laboratórios.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
Get Anthos Ready. Demand for Google Kubernetes Engine is growing, and customers are looking to Google and its partners to provide in-depth technical knowledge. This first Google Kubernetes Engine-centric Quest of best practices hands-on labs will get you started containerizing to modernize in place , and then managing your deployed apps and services -- with monitoring, tracing, and logging.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
Esta é a segunda de uma série de duas Quests sobre o faturamento e as noções básicas de gestão de custos no GCP. A Quest é mais indicada às equipes do setor financeiro e de TI que são responsáveis por otimizar a infraestrutura em nuvem de uma organização. Aqui você aprenderá várias maneiras de controlar e otimizar os custos do GCP, incluindo a definição de orçamentos e alertas, a gestão de limites de cota e os descontos por uso contínuo. Nos laboratórios práticos, você aprenderá a usar várias ferramentas para controlar e otimizar os custos do GCP ou para influenciar as equipes de tecnologia a adotar práticas recomendadas de otimização de custos.
A segurança é um recurso indiscutível dos serviços do Google Cloud, e o Google Cloud desenvolveu ferramentas específicas para garantir a segurança e a identidade nos seus projetos. Nesta Quest de nível básico, você terá experiências práticas com o serviço Identity & Access Management (IAM, na sigla em inglês) do Google Cloud, que é perfeito para gerenciar usuários e contas de máquinas virtuais. Você ganhará experiência com segurança de rede provisionando VPCs e VPNs, além de conhecer as ferramentas de proteção contra riscos e perda de dados.
Esta Quest é perfeita para desenvolvedores de nuvem iniciantes em busca de treinamento prático que vai além do GCP Essentials. Você ganhará experiência prática com laboratórios que detalham o Cloud Storage e outros serviços de aplicativos fundamentais, como o Stackdriver e o Cloud Functions. Com esta Quest, você desenvolve habilidades valiosas, que poderá aplicar em qualquer iniciativa do GCP. Assista também os vídeos rápidos que explicam os conceitos principais dos laboratórios.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this quest you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out! Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
A metodologia de migração de VM do Google Cloud apresenta uma diretriz definida e iterativa para os usuários. Nesta Quest, você realizará as quatro etapas da sequência de migração. Você também criará relatórios de avaliação com o CloudPhysics, usará os modelos de infraestrutura como código do Terraform, realizará migrações lift-and-shift com o Cloud Endure e replicará aplicativos como cargas de trabalho nativas da nuvem. Conclua esta Quest para conhecer na prática as soluções de migração de VM desenvolvidas pelo Google. Como bônus, incluímos um laboratório básico sobre o Google Kubernetes Engine para quem precisa se atualizar.
O Google Kubernetes Engine foi projetado especificamente para ser compatível com implantações gerenciadas do Kubernetes, o mais famoso sistema de orquestração de contêineres, no Google Cloud. Nesta Quest de nível avançado, você praticará a configuração de imagens e contêineres do Docker, além da implantação de aplicativos completos do Kubernetes Engine. Você também aprenderá as habilidades práticas necessárias para integrar a orquestração de contêineres ao seu fluxo de trabalho.
Esta Quest é ideal para pessoas que atuam na área de tecnologia ou finanças e são responsáveis pelo gerenciamento de custos do GCP. Ela mostrará como configurar uma conta de faturamento, organizar recursos e gerenciar permissões de acesso às informações de faturamento. Nos laboratórios práticos, você aprenderá a visualizar sua fatura, acompanhar os custos do GCP com relatórios específicos, analisar os dados de faturamento com o BigQuery ou o Planilhas Google e criar painéis de faturamento personalizados com o Data Studio.
Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.