Oshan Mudannayake
Miembro desde 2020
Miembro desde 2020
Get started with Go (Golang) by reviewing Go code, and then creating and deploying simple Go apps on Google Cloud. Go is an open source programming language that makes it easy to build fast, reliable, and efficient software at scale. Go runs native on Google Cloud, and is fully supported on Google Kubernetes Engine, Compute Engine, App Engine, Cloud Run, and Cloud Functions. Go is a compiled language and is faster and more efficient than interpreted languages. As a result, Go requires no installed runtime like Node, Python, or JDK to execute.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.
Si es un desarrollador principiante de soluciones en la nube que busca adquirir experiencia práctica además de la que le proporciona GCP Essentials, esta Quest es ideal para usted. Los labs que se integran a Cloud Storage y otros servicios de aplicaciones clave como Stackdriver y Cloud Functions le permitirán lograrlo. Si realiza esta Quest, desarrollará habilidades valiosas que pueden aplicarse a cualquier iniciativa de GCP. En los videos de 1 minuto, se le explicarán los conceptos clave de estos labs.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Workspace es la plataforma de aplicaciones colaborativas de Google que se ofrece mediante Google Cloud. En esta curso de nivel básico, adquirirá experiencia práctica en las aplicaciones principales de Workspace desde la perspectiva del usuario. Si bien hay muchas más aplicaciones y componentes de herramientas de Workspace de los que se abordan en esta curso, obtendrá experiencia en las aplicaciones principales: Gmail, Calendario, Hojas de cálculo y algunas otras. Cada lab se puede completar en entre 10 y 15 minutos, pero se proporciona tiempo adicional para realizar una exploración autodidacta de las aplicaciones. Como paso final y opcional, puede realizar el lab de práctica para el examen de certificación a fin de ver el tipo de preguntas de práctica y situaciones basadas en el rendimiento que forman parte del examen de certificación de Workspace que realizará más adelante.
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
Esta Quest es más apropiada para quienes desempeñan cargos relacionados con la tecnología o las finanzas y son responsables de administrar los costos de GCP. Aprenderá a configurar una cuenta de facturación, a organizar recursos y a administrar permisos de acceso a la facturación. En los labs prácticos, aprenderá a ver sus facturas, a hacer un seguimiento de sus costos de GCP con informes de facturación, a analizar sus datos de facturación con Hojas de cálculo de Google o BigQuery, y a crear paneles de facturación personalizados con Data Studio.
Google Cloud is committed to supporting Windows workloads in its frameworks and services. In this advanced-level quest, you will get hands-on practice running many of the popular Windows services on Google Cloud. For example, you will learn how to instantiate Microsoft SQL databases, cloud tools for Powershell on Google Cloud Platform frameworks.
En esta Quest de labs prácticos, se demuestra cómo integrar los servicios y las herramientas de Google Cloud Platform con aplicaciones de G Suite. Mediante tecnologías de integración, como Apps Script y el entorno de líneas de comando Clasp, creará y publicará aplicaciones web y complementos para productos de G Suite: Hojas de cálculo, Documentos, Formularios y Presentaciones. Con App Maker, compilará una aplicación lista para usar que tendrá una base de datos de Google Cloud SQL, estará integrada con Google Maps y tendrá un diseño responsivo para dispositivos móviles. Contiene otros labs que crean conexiones directas a las fuentes de datos de GCP mediante la API de BigQuery, Hojas de cálculo y Presentaciones para recopilar, analizar y presentar datos.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this quest you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out! Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
En esta Quest, el usuario experimentado de Google Cloud aprenderá a describir e iniciar recursos en la nube con Terraform, una herramienta de código abierto que codifica API en archivos de configuración declarativa. Es posible cambiar la versión de esos archivos, así como editarlos, revisarlos, tratarlos como código o compartirlos entre los miembros de un equipo. En estos nueve labs prácticos, trabajará con plantillas de ejemplo y comprenderá cómo ejecutar una amplia variedad de configuraciones, desde servidores simples hasta aplicaciones completas de balanceo de cargas.
Esta es la primera de las dos Quests de labs prácticos derivada de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, editado por O'Reilly Media, Inc. En esta primera Quest, en el capítulo 8, tiene la oportunidad de practicar todos los aspectos de la transferencia, la preparación, el procesamiento, las consultas, la exploración y la visualización de los conjuntos de datos con las herramientas y los servicios de Google Cloud Platform.
¿Macrodatos, aprendizaje automático y datos científicos? Parece la combinación perfecta. En esta Quest de nivel avanzado, obtendrá experiencia práctica en servicios de GCP como Big Query, Dataproc y Tensorflow, aplicándolos a casos prácticos en los que se usan conjuntos de datos científicos de la vida real. Mediante la adquisición de experiencia en tareas como el análisis de datos de terremotos y la agregación de imágenes satelitales, Scientific Data Processing lo ayudará a expandir sus habilidades en macrodatos y aprendizaje automático para que pueda solucionar problemas propios relacionados con un amplio espectro de disciplinas científicas.
Esta es la segunda de dos Quests de labs prácticos que provienen de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado por O'Reilly Media, Inc. En esta segunda Quest, que abarca desde el capítulo 9 hasta el final del libro, ampliará las habilidades practicadas en la primera Quest y ejecutará trabajos completos de aprendizaje automático con herramientas de última generación y conjuntos de datos del mundo real, todo mediante el uso de las herramientas y los servicios de Google Cloud Platform.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, GCP has a tool for just about any machine learning job. In this advanced-level quest, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on GCP.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
Usar la potencia de procesamiento a gran escala para reconocer patrones y "leer" imágenes es una de las tecnologías fundamentales de la IA, desde vehículos autónomos hasta reconocimiento facial. Google Cloud Platform proporciona velocidad y exactitud de primer nivel mediante sistemas que se pueden usar con tan solo llamar a API. Gracias a esos sistemas y una amplia variedad de otras API, GCP ofrece una herramienta para prácticamente cualquier trabajo de aprendizaje automático. En esta Quest introductoria, obtendrá experiencia práctica en el aprendizaje automático y su aplicación al procesamiento de imágenes. Logrará esto mediante labs que le permitirán etiquetar imágenes y detectar rostros y puntos de referencia, así como extraer, analizar y traducir texto de las imágenes.
¿Quiere aprender a usar el aprendizaje automático, a familiarizarse con él y a compilar modelos en minutos, en lugar de pasar horas utilizando únicamente SQL? BigQuery Machine Learning es una nueva función de BigQuery en la que los analistas de datos pueden crear, entrenar, evaluar y predecir con modelos de aprendizaje automático y codificación mínima. En esta serie de labs, experimentará con diferentes tipos de modelos y aprenderá cuáles son las características de un buen modelo.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
¿Desea convertir sus datos de marketing en estadísticas y compilar paneles? Reúna todos sus datos en un solo lugar para lograr un análisis a gran escala y poder compilar modelos. Aprenda a consultar sus datos y utilice BigQuery para obtener información repetible, escalable y valiosa. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
¿Quiere optimizar o compilar su almacén de datos? Aprenda las prácticas recomendadas para extraer, transformar y cargar sus datos en Google Cloud con BigQuery. En esta serie de labs interactivos, creará y optimizará su almacén de datos con una variedad de conjuntos de datos públicos de BigQuery a gran escala. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest introductoria, adquirirá experiencia práctica con la aplicación del aprendizaje automático en el procesamiento del lenguaje. Para ello, realizará labs que le permitan extraer entidades de un texto y realizar análisis de opiniones y sintácticos, así como utilizar la API Speech to Text para realizar transcripciones.
Los macrodatos, el aprendizaje automático y la inteligencia artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Afortunadamente, GCP ofrece servicios fáciles de usar en estas áreas y Qwiklabs le proporciona esta Quest de nivel básico para que pueda dar sus primeros pasos con herramientas como BigQuery, API de Cloud Speech y Cloud ML Engine. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.
Kubernetes es el sistema de organización de contenedores más popular, y Google Kubernetes Engine se diseñó específicamente para admitir implementaciones de Kubernetes administradas en Google Cloud. En esta Quest de nivel avanzado, adquirirá experiencia práctica en la configuración de imágenes y contenedores de Docker, así como en la implementación de aplicaciones completas de Kubernetes Engine. En esta Quest, se le enseñarán las habilidades prácticas necesarias para integrar la organización de contenedores a su propio flujo de trabajo.