Mudannayake Oshan
メンバー加入日: 2020
メンバー加入日: 2020
Get started with Go (Golang) by reviewing Go code, and then creating and deploying simple Go apps on Google Cloud. Go is an open source programming language that makes it easy to build fast, reliable, and efficient software at scale. Go runs native on Google Cloud, and is fully supported on Google Kubernetes Engine, Compute Engine, App Engine, Cloud Run, and Cloud Functions. Go is a compiled language and is faster and more efficient than interpreted languages. As a result, Go requires no installed runtime like Node, Python, or JDK to execute.
この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。
Google Cloud Essentials よりレベルの高いハンズオンラボでの実践を求めている初心者のクラウド デベロッパーであるなら、このクエストをおすすめします。 Cloud Storage や、Stackdriver および Cloud Functions などの主要なアプリケーション サービスに関連するラボを通して、実践的な経験を積むことが可能です。 このクエストでは、すべての Google Cloud イニシアチブに応用できる有益なスキルを身に付けられます。主なコンセプトは 1 分間のビデオで説明されています。
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Workspace は、共同作業が可能な Google のアプリケーション プラットフォームであり、Google Cloud で提供されます。この入門レベルのクエストでは、ユーザーの視点で Workspace の主要なアプリケーションの実践演習を行います。ここで取り上げる機能以外にも、Workspace には多くのアプリケーションやツールが含まれていますが、ここでは Gmail、カレンダー、スプレッドシートなど、いくつかの主要アプリを経験できます。各ラボの所要時間は 10~15 分ですが、自分で自由にアプリケーションの操作を試せるように追加の時間が用意されています。任意で行える最後のステップとして、認定試験用模擬試験のラボを受講し、練習問題の内容を確認できます。また、今後予定されている Workspace 認定試験には、成績に基づくシナリオが含まれる予定です。
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
このクエストは、技術または財務の担当者で GCP の費用の管理を担う方に最適です。請求先アカウントを設定する方法、リソースを整理する方法、請求アクセス権限を管理する方法について学習します。ハンズオンラボでは、請求書を表示する方法、請求レポートを使用して GCP の費用を追跡する方法、BigQuery や Google スプレッドシートを使用して請求データを分析する方法、データポータルを使用してカスタムの請求ダッシュボードを作成する方法について学習します。
Google Cloud is committed to supporting Windows workloads in its frameworks and services. In this advanced-level quest, you will get hands-on practice running many of the popular Windows services on Google Cloud. For example, you will learn how to instantiate Microsoft SQL databases, cloud tools for Powershell on Google Cloud Platform frameworks.
このハンズオンラボのクエストは、Google Cloud サービスおよびツールと Workspace アプリケーションとの統合力を実証しています。Node.js を使用してアンケート ボットを構築したり、Natural Language API を使用して Google ドキュメントの感情を認識したり、Apps スクリプトを使用してチャットボットを構築したりします。
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this quest you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out! Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
このクエストでは、Google Cloud の上級ユーザーを対象に、Terraform を使用してクラウド リソースを記述および起動する方法について学習します。Terraform は、API を宣言的な構成ファイルに体系化するオープンソース ツールであり、チームメンバー間での共有、コード処理、編集、レビュー、バージョン管理を行うことができます。ハンズオンラボは 9 つで構成されており、サンプル テンプレートを使用して、シンプルなサーバーから完全な負荷分散アプリケーションまで、さまざまな構成を起動する方法を実践します。
これは 2 つのクエストから構成されるハンズオンラボの 1 つ目のクエストで、『Data Science on Google Cloud Platform』(著者: Valliappa Lakshmanan、出版元: O'Reilly Media, Inc.)という書籍から抜粋した演習をもとに作成されたものです。1 つ目のクエストでは第 8 章までを扱い、Google Cloud Platform のツールとサービスを使用して、データセットの取り込み、準備、処理、クエリ、探索、可視化に関するあらゆる面について学習することができます。
ビッグデータ、機械学習、科学的データ。完璧な組み合わせといえます。このクエストは上級レベルであり、実際の科学的データセットを使用するユースケースに BigQuery、Dataproc、Tensorflow などの GCP サービスを当てはめ、実践的な演習を行います。「科学的データ処理」では、地震データの分析や衛星画像の集約といったタスクを実践し、ビッグデータと機械学習に関するスキルの強化を図ります。これにより、多岐にわたる科学的分野でさまざまな問題に取り組むことができるようになります。
これは2 つ目のクエストで、Google Cloud Platform の Valliappa Lakshmananが O'Reilly Media, Inc. から出版した「Data Science on the Google Cloud Platform」からの派生したラボです。9つのラボで構成され、1つ目のクエストで練習したスキルをさらに伸ばし、最先端で本格的な機械学習を実際的なデータで実行することで、Google Cloud Platformの機能とサービスを堪能していだけます。
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, GCP has a tool for just about any machine learning job. In this advanced-level quest, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on GCP.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
機械学習はもっとも迅速に成長しているテクノロジーの分野です。Google Cloud Platformは、その成長に一役かっています。APIのホストを使うことにより、GCPにはツールがあります。この上級レベルのクエストでは、「Implementing an AI Chatbot with Dialogflow」や「Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API」と同様に機械学習APIについてハンズオンで演習ができます。
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
大規模な計算処理能力を活用してパターンを認識し、画像を解釈することは、自動運転から顔認識まで、さまざまな用途における AI の基盤技術です。Google Cloud Platform は、API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供しています。GCP にはさまざまな API があるため、機械学習に関するほぼすべてのタスクに対応することができます。この入門クエストでは、画像処理に用いられる機械学習の実践的な演習を行います。ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、画像内のテキストを抽出、分析、翻訳したりすることができます。
機械学習を学んで実践し、SQL だけを使用して、数時間ではなく数分でモデルをビルドしたいとお考えの場合、BigQuery の新機能である BigQuery ML を使用すれば、最小限のコーディングで機械学習モデルの作成、トレーニング、評価、予測が可能になります。この一連のラボでは、さまざまなモデルタイプを試して、優れたモデルを作成する方法を学習します。
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
マーケティングデータを洞察し、ダッシュボード構築はいかがでしょう?大規模な分析とモデル構築のために、すべてのデータを1か所にまとめましょう。クエリ方法を学び、また BigQuery を使用しながら、再現性があり、拡張可能、そして価値ある洞察を データ化します。 BigQuery は、Google が完全管理しており、 NoOpsで、低コストの分析データベースです。 BigQuery を使用すれば、管理すべき インフラストラクチャを持たずに、またはデータベース管理者を必要とすることなく、何テラバイトものデータをクエリすることができます。 BigQuery は SQL を使用し、従量制モデルを利用できます。 BigQuery を使用すれば、データ分析に集中でき、意味ある洞察を見い出だすことができます。
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
データ ウェアハウスの構築または最適化を検討している場合は、BigQuery を使ったデータの抽出、変換、Google Cloud への読み込みに関するおすすめの方法を学びます。この一連のインタラクティブなラボでは、各種の大規模な BigQuery 一般公開データセットを使って独自のデータ ウェアハウスを作成、最適化します。BigQuery は、Google が低料金で提供する NoOps のフルマネージド分析データベースです。インフラストラクチャを所有して管理したり、データベース管理者を配置したりすることなく、テラバイト単位の大規模なデータでクエリを実行できます。また、SQL が採用されており、従量課金制モデルでご利用いただけます。このような特徴を活かし、お客様は有用な情報を得るためのデータ分析に専念できます。
皆さんもよくご存じのとおり、機械学習は最も急速に開発、利用が進んでいる技術の 1 つで、Google Cloud Platform はその促進に大きく貢献してきました。GCP では多数の API を活用して、ほぼすべての機械学習ジョブに対応するツールを提供しています。この入門クエストでは、ラボを使って言語処理に適用される機械学習に関する実践演習を行います。これによりテキストからのエンティティの抽出、感情分析と構文分析、音声文字変換のための Speech to Text API の使用方法を学ぶことができます。
ビッグデータ、機械学習、AIはコンピューター業界ではホットな話題です。しかし、これらの分野は専門的で、入門レベルでも難しいことがあります。Google Cloud は使いやすく、Qwiklabs のクエストでは入門レベルをカバーしているため、Big Query、Cloud Speech API、AI Platform などの最初のステップを開始することができます。主なコンセプトは 1 分間のビデオで説明されています。
Kubernetes は最もポピュラーなコンテナ オーケストレーションのシステムで、Google Kubernetes Engine は Google Cloud でのデプロイに対応できるようデザインされています。この上級レベルのラボでは、ハンズオンで Docker イメージやコンテナ、およびデプロイができる演習があります。お客様独自のワークフローに合う、コンテナ オーケストレーション統合に必要な実践的スキルを学びます。ハンズオンラボでスキルや知識を試したいですか?このクエスト修了後に、 Deploy to Kubernetes in Google Cloud クエストの最後にあるチャレンジラボを完了すると、Google Cloud 限定デジタルバッジを獲得できます。