Join Sign in

Michael Otmar Kaiser

Member since 2020

Badge for Generative AI Explorer - Vertex AI Generative AI Explorer - Vertex AI Earned мая 9, 2024 EDT
Badge for Introduction to Generative AI Introduction to Generative AI Earned мая 3, 2024 EDT
Badge for Machine Learning Operations (MLOps) with Vertex AI: Manage Features Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned апр. 24, 2024 EDT
Badge for Machine Learning Operations (MLOps): Getting Started Machine Learning Operations (MLOps): Getting Started Earned апр. 24, 2024 EDT
Badge for Computer Vision Fundamentals with Google Cloud Computer Vision Fundamentals with Google Cloud Earned апр. 23, 2024 EDT
Badge for Production Machine Learning Systems Production Machine Learning Systems Earned апр. 16, 2024 EDT
Badge for Machine Learning in the Enterprise Machine Learning in the Enterprise Earned апр. 14, 2024 EDT
Badge for Build and Deploy Machine Learning Solutions on Vertex AI Build and Deploy Machine Learning Solutions on Vertex AI Earned апр. 13, 2024 EDT
Badge for Engineer Data for Predictive Modeling with BigQuery ML Engineer Data for Predictive Modeling with BigQuery ML Earned апр. 11, 2024 EDT
Badge for Classify Images with TensorFlow on Google Cloud Classify Images with TensorFlow on Google Cloud Earned апр. 8, 2024 EDT
Badge for Feature Engineering Feature Engineering Earned марта 27, 2024 EDT
Badge for Build, Train and Deploy ML Models with Keras on Google Cloud Build, Train and Deploy ML Models with Keras on Google Cloud Earned марта 24, 2024 EDT
Badge for BigQuery for Machine Learning BigQuery for Machine Learning Earned марта 18, 2024 EDT
Badge for Prepare Data for ML APIs on Google Cloud Prepare Data for ML APIs on Google Cloud Earned марта 17, 2024 EDT
Badge for Launching into Machine Learning Launching into Machine Learning Earned марта 4, 2024 EST
Badge for Introduction to AI and Machine Learning on Google Cloud Introduction to AI and Machine Learning on Google Cloud Earned февр. 26, 2024 EST

The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Learn more

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Learn more

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Learn more

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions with Vertex AI course, where you will learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models. This skill badge course is for professional Data Scientists and Machine Learning Engineers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

Earn the intermediate skill badge by completing the Classify Images with TensorFlow on Google Cloud course where you will learn how to use TensorFlow and Vertex AI to create and train machine learning models. You will primarily interact with Vertex AI Workbench user-managed notebooks. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

Learn more

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more