Conclua o selo de habilidade intermediário Deploy Kubernetes Applications on Google Cloud para demonstrar que você é capaz de: configurar e criar imagens de contêiner do Docker, criar e gerenciar clusters do Google Kubernetes Engine (GKE), utilizar o kubectl para o gerenciamento eficiente de clusters e implantar aplicativos do Kubernetes com a prática de entrega contínua (CD). Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo que pode ser compartilhado com seus contatos.
This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.
In this course, you learn about containers and how to build, and package container images. The content in this course includes best practices for creating and securing containers, and provides an introduction to Cloud Run and Google Kubernetes Engine for application developers.
Course Description:
Course Description:
Neste curso, os desenvolvedores de apps aprendem a criar e desenvolver aplicativos nativos da nuvem que se integram totalmente aos serviços gerenciados do Google Cloud. Com as apresentações, as demonstrações e os laboratórios práticos, os participantes vão aprender a aplicar as práticas recomendadas para o desenvolvimento de apps e usar os serviços do Google Cloud Storage específicos para objetos, dados relacionais, armazenamento em cache e análises de dados. É necessário concluir pelo menos uma versão de cada laboratório. Todos os laboratórios estão disponíveis em Node.js. A maioria deles também tem versões em Python ou Java. Use a linguagem que você preferir. Este é o primeiro curso da série "Developing Applications with Google Cloud". Depois de concluir este curso, inscreva-se no "Securing and Integrating Components of your Application".
Noções básicas do Google Cloud: Core Infrastructure" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta que gera protótipos e personaliza modelos de IA generativa. Com lições imersivas, demonstrações interessantes e um laboratório, você vai conhecer o fluxo de trabalho da IA generativa, além de aprender a usar o Vertex AI Studio para aplicativos do Gemini multimodal, design de comando e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial desses modelos nos seus projetos com o Vertex AI Studio.
Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.
Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.
Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.