(Previously named Search on Vertex AI Agent Builder) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Vertex AI Agent Builder to integrate enterprise-grade generative AI search.
Ce cours présente Vertex AI Vector Search et décrit comment l'utiliser afin de créer une application de recherche avec des API LLM pour les représentations vectorielles continues. Il comprend des leçons conceptuelles sur la recherche vectorielle et l'embedding textuel (ou "plongement textuel"), des démonstrations pratiques de création d'une recherche vectorielle sur Vertex AI, ainsi qu'un atelier pratique.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Ce cours présente Vertex AI Studio, un outil permettant de prototyper et de personnaliser des modèles d'IA générative. Au moyen de cours immersifs, de démonstrations attrayantes et d'un atelier pratique, vous allez découvrir le workflow d'IA générative et apprendre à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de ces modèles dans vos projets avec Vertex AI Studio.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Complete the intermediate Mitigate Threats and Vulnerabilities with Security Command Center skill badge to demonstrate skills in the following: preventing and managing environment threats, identifying and mitigating application vulnerabilities, and responding to security anomalies.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations, des démonstrations et des ateliers pratiques, les participants découvrent et déploient les composants d'une solution Google Cloud sécurisée, y compris les technologies de contrôle des accès à Cloud Storage, les clés de sécurité, les clés de chiffrement fournies par le client, les contrôles d'accès aux API, les champs d'application, les VM protégées, le chiffrement, et les URL signées. Le cours aborde également la sécurisation des environnements Kubernetes.
Get Anthos Ready. This Google Kubernetes Engine-centric quest of best practice hands-on labs focuses on security at scale when deploying and managing production GKE environments -- specifically role-based access control, hardening, VPC networking, and binary authorization.
Earn a DRI badge by completing the Application Modernization - GKE multi-cluster multi-region infrastructure quest, where you demonstrate your understanding of GKE Best-practices GKE Networking, GKE Security, GKE multi-clusters architecture, VPC networking custom networking mode and VPC routing When you complete this activity, you can earn the badge displayed above! View all the badges you have earned by visiting your profile page.
Earn a DRI badge by completing the Infra Foundations - Implementing Least Privilege for Service Accounts quest, where you demonstrate your capabilities to manage service accounts, assign IAM roles, setting up and using impersonation and implementing logging sinks that target GCS buckets. When you complete this activity, you can earn the badge displayed above! View all the badges you have earned by visiting your profile page.
Earn a DRI badge by completing the Infra Foundations - Implementing Private Google Access for VPC Service Controls quest, where you demonstrate your capabilities implementing VPC networking custom networking mode, Private Google Access, Cloud DNS response policies, VPC routing and Service Controls. When you complete this activity, you can earn the badge displayed above! View all the badges you have earned by visiting your profile page.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Les pipelines de données s'inscrivent généralement dans le paradigme EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours vous indiquera quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il vous présentera également plusieurs solutions Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.
Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Data Engineering on Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Building Batch Data Pipelines on Google Cloud".
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Flex your Google Clout! Each week unlocks a new cloud puzzle. How fast can you find the solution? Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.
Flex your Google Clout! Each week unlocks a new cloud puzzle. How fast can you find the solution? Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.
Flex your Google Clout! Each week unlocks a new cloud puzzle. How fast can you find the solution? Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.
Flex your Google Clout! Each week unlocks a new cloud puzzle. How fast can you find the solution? Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.
Flex your Google Clout! Each day unlocks a new cloud puzzle. Complete all five and you’ll earn the inaugural Google Cloud badge! Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.
Flex your Google Clout! Each day unlocks a new cloud puzzle. Complete all five and you’ll earn the inaugural Google Cloud badge! Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
Google Cloud, in partnership with Harvard Global Health Institute, released the COVID-19 Public Forecasts to serve as an additional resource for healthcare, the public sector, and other organizations responding to the pandemic. In this edition of the Work and Play Series, we are going to learn how to use that data to make predictions and visualizations. You’ll get hands-on experience with exactly the same tools being used to help solve complex problems and keep people safe and healthy.
La mise en réseau est l’un des principaux thèmes du cloud computing : c’est la structure sous-jacente de GCP et ce qui permet la connexion entre vos ressources et services. Cette quête de niveau intermédiaire traite des services de réseau essentiels à GCP et vous familiarisera avec des outils spécialisés permettant de développer des réseaux matures. De la découverte des tenants et aboutissants des VPC à la création d'équilibreurs de charge professionnels, la mise en réseau dans Google Cloud vous apportera l'expérience pratique nécessaire pour développer des réseaux robustes.