Rejoindre Se connecter

Ruqiya Bin Safi

Date d'abonnement : 2019

Ligue d'Argent

4230 points
Badge pour Transformer Models and BERT Model - Français Transformer Models and BERT Model - Français Earned juin 24, 2023 EDT
Badge pour Attention Mechanism - Français Attention Mechanism - Français Earned juin 8, 2023 EDT
Badge pour Encoder-Decoder Architecture - Français Encoder-Decoder Architecture - Français Earned juin 8, 2023 EDT
Badge pour Introduction to Responsible AI - Français Introduction to Responsible AI - Français Earned juin 4, 2023 EDT
Badge pour Introduction to Large Language Models - Français Introduction to Large Language Models - Français Earned juin 4, 2023 EDT
Badge pour Cloud Hero BQML Cloud Hero BQML Earned mai 24, 2023 EDT
Badge pour Introduction to Generative AI - Français Introduction to Generative AI - Français Earned mai 17, 2023 EDT
Badge pour Serverless Data Processing with Dataflow: Operations Serverless Data Processing with Dataflow: Operations Earned avr. 27, 2023 EDT
Badge pour Serverless Data Processing with Dataflow: Develop Pipelines Serverless Data Processing with Dataflow: Develop Pipelines Earned avr. 27, 2023 EDT
Badge pour Serverless Data Processing with Dataflow: Foundations Serverless Data Processing with Dataflow: Foundations Earned avr. 22, 2023 EDT
Badge pour Smart Analytics, Machine Learning, and AI on Google Cloud - Français Smart Analytics, Machine Learning, and AI on Google Cloud - Français Earned avr. 22, 2023 EDT
Badge pour Building Resilient Streaming Analytics Systems on Google Cloud - Français Building Resilient Streaming Analytics Systems on Google Cloud - Français Earned avr. 22, 2023 EDT
Badge pour Engineer Data for Predictive Modeling with BigQuery ML Engineer Data for Predictive Modeling with BigQuery ML Earned avr. 21, 2023 EDT
Badge pour Building Batch Data Pipelines on Google Cloud - Français Building Batch Data Pipelines on Google Cloud - Français Earned avr. 20, 2023 EDT
Badge pour Build a Data Warehouse with BigQuery Build a Data Warehouse with BigQuery Earned avr. 18, 2023 EDT
Badge pour Prepare Data for ML APIs on Google Cloud Prepare Data for ML APIs on Google Cloud Earned avr. 17, 2023 EDT
Badge pour Google Cloud Big Data and Machine Learning Fundamentals - Français Google Cloud Big Data and Machine Learning Fundamentals - Français Earned avr. 14, 2023 EDT
Badge pour Modernizing Data Lakes and Data Warehouses with Google Cloud - Français Modernizing Data Lakes and Data Warehouses with Google Cloud - Français Earned avr. 14, 2023 EDT
Badge pour Preparing for your Professional Data Engineer Journey Preparing for your Professional Data Engineer Journey Earned avr. 13, 2023 EDT
Badge pour DEPRECATED Creating with Google Maps DEPRECATED Creating with Google Maps Earned jan. 31, 2020 EST
Badge pour Google Workspace Essentials Google Workspace Essentials Earned nov. 26, 2019 EST
Badge pour Advanced ML: ML Infrastructure Advanced ML: ML Infrastructure Earned nov. 26, 2019 EST
Badge pour Intermediate ML: TensorFlow on Google Cloud Intermediate ML: TensorFlow on Google Cloud Earned nov. 25, 2019 EST
Badge pour Intro to ML: Language Processing Intro to ML: Language Processing Earned juil. 3, 2019 EDT
Badge pour Intro to ML: Image Processing Intro to ML: Image Processing Earned juil. 3, 2019 EDT
Badge pour [DEPRECATED] Data Engineering [DEPRECATED] Data Engineering Earned juin 15, 2019 EDT
Badge pour Baseline: Data, ML, AI Baseline: Data, ML, AI Earned mai 23, 2019 EDT
Badge pour API d'apprentissage automatique API d'apprentissage automatique Earned mai 23, 2019 EDT
Badge pour Google Cloud Essentials Google Cloud Essentials Earned avr. 3, 2019 EDT

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Welcome Gamers! Learn the fundamentals of BQML, all while having fun! In this game, you will learn to use the python-based command line tool for BigQuery. The hands-on labs will help you create a machine learning model, a classification model, and a forecasting model. Earn the points by completing the steps in the lab... Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

En savoir plus

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

En savoir plus

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

En savoir plus

Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.

En savoir plus

Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; building machine learning models using BigQuery ML; and using Cloud Composer to copy data across multiple locations. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

En savoir plus

Les pipelines de données s'inscrivent généralement dans le paradigme EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours vous indiquera quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il vous présentera également plusieurs solutions Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network. For practice with BigQuery fundamentals (including working with the console and command line), complete the course titled BigQuery Basics for Data Analysts.

En savoir plus

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

En savoir plus

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Data Engineering on Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Building Batch Data Pipelines on Google Cloud".

En savoir plus

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

En savoir plus

In this quest you will use several tools available in Google Cloud to manipulate data and create a Google Map - map location details to find subway stations or a business; use geocoding and Apps Script to send an email of a map; visualize data on a customized map; and build a server-side proxy to create a map on a mobile device.

En savoir plus

Workspace est la plate-forme d'applications collaboratives de Google, fournie par Google Cloud. Dans cette cours de niveau débutant, vous allez vous familiariser avec les applications de base de Workspace du point de vue de l’utilisateur. Bien que Workspace propose plus d'applications et de composants que ceux présentés ici, c'est un bon moyen pour vous familiariser avec les applications principales : Gmail, Agenda, Sheets et quelques autres. Chaque atelier peut être terminé en 10-15 minutes, mais un temps supplémentaire vous est proposé pour mieux explorer les applications de manière autonome. Comme étape finale et optionnelle, vous pouvez suivre l'atelier de préparation à l'examen de certification et découvrir le type de questions et de scénarios basés sur les performances qui font partie intégrante de l'examen de certification Workspace.

En savoir plus

Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, GCP has a tool for just about any machine learning job. In this advanced-level quest, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on GCP.

En savoir plus

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

En savoir plus

Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP dispose d'un outil pour pratiquement toutes les tâches de machine learning. Cette quête de présentation vous permet de vous familiariser avec le machine learning sur des applications de traitement du langage. Au fil des ateliers, vous apprendrez à extraire des entités d'un texte, à analyser les sentiments et la syntaxe, et à utiliser l'API de reconnaissance vocale pour la transcription.

En savoir plus

L'une des technologies de base de l'IA, que l'on retrouve des voitures autonomes à la reconnaissance faciale, repose sur l'utilisation de la puissance de calcul à grande échelle pour reconnaître des schémas et "lire" des images. La plate-forme Google Cloud offre une vitesse et une précision haut de gamme grâce à des systèmes qui peuvent être utilisés via de simples appels d'API. Doté d'une multitude d'API, GCP dispose d'un outil pour pratiquement toutes les tâches de machine learning. Cette quête de présentation vous permet de vous familiariser avec le machine learning appliqué au traitement des images. Au fil des ateliers, vous apprendrez à attribuer une étiquette aux images, à détecter les visages et les points de repère, ainsi qu'à extraire, analyser et traduire le texte dans les images.

En savoir plus

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

En savoir plus

Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes récurrents de l'informatique, mais ces domaines sont spécialisés, et il est ardu de dénicher du matériel de référence. Heureusement, GCP fournit des services conviviaux dans ces domaines, et Qwiklabs vous y forme dans cette quête introductive. Ainsi, vous pourrez faire vos premiers pas avec des outils tels que BigQuery, l'API Cloud Speech et Cloud ML Engine. Des vidéos d'une minute résument les concepts clés de chaque atelier.

En savoir plus

Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API.

En savoir plus

Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.

En savoir plus