正在加载…
未找到任何结果。
    在 LinkedIn 动态中分享 Twitter Facebook

    05

    Building Batch Data Pipelines on Google Cloud

    05

    Building Batch Data Pipelines on Google Cloud

    magic_button Cloud Dataproc Data Pipeline ETL
    These skills were generated by A.I. Do you agree this course teaches these skills?
    13 个小时 中级 universal_currency_alt 15 个积分

    Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

    完成此活动,赢取徽章!向世界展示您掌握的技能,拓展云领域的职业之路。

    Building Batch Data Pipelines on Google Cloud徽章
    info
    课程信息
    目标
    • Review different methods of data loading: EL, ELT and ETL and when to use what
    • Run Hadoop on Dataproc, leverage Cloud Storage, and optimize Dataproc jobs
    • Build your data processing pipelines using Dataflow
    • Manage data pipelines with Data Fusion and Cloud Composer
    前提条件

    Experience with data modeling and ETL (extract, transform, load) activities.

    Experience with developing applications by using a common programming language such as Python or Java.

    受众
    Developers responsible for designing pipelines and architectures for data processing.
    支持的语言
    English, español (Latinoamérica), 日本語, français, português (Brasil), italiano, and 한국어
    学完本课程后,我可以做些什么?
    学完本课程后,您可以探索学习路线 中的其他内容或浏览学习目录
    我能获得什么徽章?
    学完一门课程后,您将获得结业徽章。徽章可在个人资料中供查看,还可在社交网络上分享。
    有兴趣通过我们的点播课程合作伙伴之一来学习本课程吗
    Coursera Pluralsight 上探索 Google Cloud 内容
    更喜欢跟随讲师学习?
    预览