正在加载…
未找到任何结果。
    在 LinkedIn 动态中分享 Twitter Facebook

    Machine Learning Engineer Learning Path

    A Machine Learning Engineer designs, builds, productionizes, optimizes, operates, and maintains ML systems.

    school 22 项活动
    update 上次更新时间:about 1 month
    person 管理者:Google Cloud
    A Machine Learning Engineer designs, builds, productionizes, optimizes, operates, and maintains ML systems. This learning path guides you through a curated collection of on-demand courses, labs, and skill badges that provide you with real-world, hands-on experience using Google Cloud technologies essential to the ML Engineer role. Once you complete the path, check out the Google Cloud Machine Learning Engineer certification to take the next steps in your professional journey.
    开始执行学习路线

    01

    Professional Machine Learning Engineer Study Guide

    book 课程
    access_time 2 个小时
    show_chart 高级

    This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study...

    开始学习课程

    02

    Google Cloud 實作研究室導覽

    book 实验
    access_time 45 分钟
    show_chart 入门级

    在第一個實作研究室中,您會存取 Google Cloud 控制台並使用下列 Google Cloud 基本功能:專案、資源、IAM 使用者、角色、權限和 API。

    开始实验

    03

    Introduction to AI and Machine Learning on Google Cloud - 繁體中文

    book 课程
    access_time 8 个小时
    show_chart 入门级

    本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

    开始学习课程

    04

    Prepare Data for ML APIs on Google Cloud

    book 课程
    access_time 6 个小时 30 分钟
    show_chart 入门级

    完成 Prepare Data for ML APIs on Google Cloud 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud...

    开始学习课程

    05

    Working with Notebooks in Vertex AI

    book 课程
    access_time 45 分钟
    show_chart 入门级

    This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1)...

    开始学习课程

    06

    Create ML Models with BigQuery ML

    book 课程
    access_time 5 个小时 30 分钟
    show_chart 中级

    「完成 Create ML Models with BigQuery ML 技能徽章中階課程,即可證明您具備下列技能: 使用 BigQuery ML 建立及評估機器學習模型,做出資料預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與他人分享。」

    开始学习课程

    07

    Engineer Data for Predictive Modeling with BigQuery ML

    book 课程
    access_time 4 个小时 15 分钟
    show_chart 中级

    完成 Engineer Data for Predictive Modeling with BigQuery ML 技能徽章中階課程, 即可證明您具備下列技能:運用 Dataprep by Trifacta 建構連至 BigQuery 的資料轉換管道、 使用 Cloud Storage、Dataflow 和 BigQuery 建構「擷取、轉換及載入」(ETL) 的工作負載、 運用 BigQuery ML 建構機器學習模型,以及使用 Cloud Composer 複製多個位置的資料。「技能徽章」 是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成...

    开始学习课程

    08

    Feature Engineering

    book 课程
    access_time 24 个小时
    show_chart 入门级

    This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature...

    开始学习课程

    09

    Build, Train and Deploy ML Models with Keras on Google Cloud

    book 课程
    access_time 15 个小时 30 分钟
    show_chart 中级

    This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

    开始学习课程

    10

    Production Machine Learning Systems

    book 课程
    access_time 16 个小时
    show_chart 中级

    This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training,...

    开始学习课程

    11

    Machine Learning Operations (MLOps): Getting Started

    book 课程
    access_time 8 个小时
    show_chart 入门级

    This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine...

    开始学习课程

    12

    Machine Learning Operations (MLOps) with Vertex AI: Manage Features

    book 课程
    access_time 8 个小时
    show_chart 中级

    This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners...

    开始学习课程

    13

    Introduction to Generative AI - 繁體中文

    book 课程
    access_time 45 分钟
    show_chart 入门级

    這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。

    开始学习课程

    14

    Introduction to Large Language Models - 繁體中文

    book 课程
    access_time 30 分钟
    show_chart 入门级

    這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。

    开始学习课程

    15

    Machine Learning Operations (MLOps) for Generative AI - 繁體中文

    book 课程
    access_time 30 分钟
    show_chart 中级

    本課程旨在提供必要的知識和工具,協助您探索機器學習運作團隊在部署及管理生成式 AI 模型時面臨的獨特挑戰,並瞭解 Vertex AI 如何幫 AI 團隊簡化機器學習運作程序,打造成效非凡的生成式 AI 專案。

    开始学习课程

    16

    Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation

    book 课程
    access_time 2 个小时 30 分钟
    show_chart 中级

    This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in...

    开始学习课程

    17

    ML Pipelines on Google Cloud

    book 课程
    access_time 2 个小时 15 分钟
    show_chart 高级

    In this course, you will be learning from ML Engineers and Trainers who work with the state-of-the-art development of ML pipelines here at Google Cloud. The first few modules will cover about TensorFlow Extended (or TFX), which is Google’s production...

    开始学习课程

    18

    Build and Deploy Machine Learning Solutions on Vertex AI

    book 课程
    access_time 8 个小时 15 分钟
    show_chart 中级

    Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions with Vertex AI course, where you will learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain,...

    开始学习课程

    19

    Create Generative AI Apps on Google Cloud

    book 课程
    access_time 4 个小时
    show_chart 中级

    Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this...

    开始学习课程

    20

    Responsible AI for Developers: Fairness & Bias - 繁體中文

    book 课程
    access_time 4 个小时
    show_chart 中级

    本課程旨在說明負責任 AI 技術的概念和 AI 開發原則,同時介紹各項技術,在實務上找出公平性和偏誤,減少 AI/機器學習做法上的偏誤。我們也將探討實用方法和工具,透過 Google Cloud 產品和開放原始碼工具,導入負責任 AI 技術的最佳做法。

    开始学习课程

    21

    Responsible AI for Developers: Interpretability & Transparency - 繁體中文

    book 课程
    access_time 3 个小时
    show_chart 中级

    本課程旨在說明 AI 的可解釋性和透明度概念、探討 AI 透明度對開發人員和工程師的重要性。課程中也會介紹實務方法和工具,有助於讓資料和 AI 模型透明且可解釋。

    开始学习课程

    22

    Responsible AI for Developers: Privacy & Safety - 繁體中文

    book 课程
    access_time 5 个小时
    show_chart 中级

    本課程涵蓋「AI 隱私權」和「AI 安全性」這兩個重要主題。我們將介紹實用的方法和工具,協助您運用 Google Cloud 產品和開放原始碼工具,導入 AI 隱私權和安全性的建議做法。

    开始学习课程