11
Machine Learning Operations (MLOps): Getting Started
11
Machine Learning Operations (MLOps): Getting Started
These skills were generated by A.I. Do you agree this course teaches these skills?
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
Info Kursus
Tujuan
- Identify and use core technologies required to support effective MLOps.
- Adopt the best CI/CD practices in the context of ML systems.
- Configure and provision Google Cloud architectures for reliable and effective MLOps environments.
- Implement reliable and repeatable training and inference workflows.
Prasyarat
Completed Machine Learning with Google Cloud or have equivalent experience
Audiens
Data Scientists looking to quickly go from machine learning prototype to production to deliver business impact. Software Engineers looking to develop Machine Learning Engineering skills. ML Engineers who want to adopt Google Cloud.
Bahasa yang tersedia
English, français, 한국어, português (Brasil), español (Latinoamérica), dan 日本語
Apa yang harus saya lakukan jika sudah menyelesaikan kursus ini?
Setelah menyelesaikan kursus ini, Anda dapat menjelajahi konten tambahan di jalur pembelajaran Anda atau mengakses katalog pembelajaran.
Badge apa yang bisa saya dapatkan?
Setelah menyelesaikan kursus, Anda akan mendapatkan badge kelulusan. Badge dapat dilihat di profil dan dibagikan di jaringan sosial Anda.
Tertarik mengikuti kursus ini dengan salah satu partner on-demand kami?
Jelajahi konten Google Cloud di Coursera dan Pluralsight.
Lebih suka belajar dengan instruktur?